
Katholieke Hogeschool Brugge-Oostende
Departement Industriële Wetenschappen en Technologie

Leeds Metropolitan University

Diplomaproject in het kader van:

Voortgezette Opleiding Elektronisch Systeem Ontwerp
en

MSc in Electronic System Design

FAST IMAGE FILTERING ALGORITHMS
IN MICROSOFT VISUAL C++
USING MMX-TECHNOLOGY

door

William De Cat

Supervisor:
Ing. H. Tassignon, Ph. D.

Oostende, september 1998

Abstract

Abstract

The objective of this work is to create a program that is useful to the image-processing course.

This course uses a mathematical approach to the subject, which is supported well by the

MATLAB mathematical software package. The problem with MATLAB is that it is an

interpreter and is therefore slow, especially for image processing.

There are several solutions to the problem. The preferred solution was to create a stand-alone

application that can apply the filters computed by Matlab to any image.

The stand-alone application was written using Microsoft Visual C++. Its inline assembler was

used to insert MMX routines speeding up the filtering process.

MMX-technology can definitely speed up application speed. The gain is not just a matter of

percentages, but factors. One can expect the MMX-routine to be about 10 to 20 times faster than

code using the traditional integer instruction.

A second advantage is the DSP-like features of MMX-technology. Packing and unpacking

handle relatively complex operations in one instruction and the saturation feature generates better

results.

The main problems with MMX-technology are data alignment and the fact that either assembler

programming or standard functions from general MMX-libraries are required to benefit from

MMX-technology. Standard libraries optimised for MMX generally use a lot of memory due to

alignment conditions. It can be said that using MMX-technology produces faster code and better

results, but that as more performance gain is wanted, more work is required.

This work also means to provide examples on how to deal with problems specific to

programming using MMX-technology, such as replacing floating-point calculations by integer

operations.

Page 2 of 61

Table of Contents

Table of Contents

INTRODUCTION..6

1 CONCEPT AND TECHNIQUES..7

2 COLORSPACE CONVERSION...10

2.1 WHAT ARE COLORSPACES?...10

2.2 WHY COLORSPACE CONVERSION?..11

2.3 CONSTANTS IN COLORSPACE CONVERSION..12

2.4 PROPERTIES OF THE CONVERSION...19

2.5 MMX ALGORITHM FOR CONVERSION FROM RGB TO YUV... 20

2.5.1 Introduction..20

2.5.2 Arithmetic with PMADDWD: the heart of the conversion...20

2.5.3 Transforming the input...22

2.5.4 Formatting the output: packing..23

2.5.5 Combining concurrent processes: pairing and register limitations..24

2.6 MMX ALGORITHM FOR CONVERSION FROM YUV TO RGB... 26

2.6.1 Introduction..26

2.6.2 Arithmetic with PMADDWD: the heart of the conversion...26

2.6.3 Transforming the input...27

2.6.4 Formatting the output: packing..28

2.7 MMX ALGORITHMS AND DATA ALIGNMENT..29

2.7.1 Avoiding invalid memory accesses...29

2.7.2 Optimising alignment for speed... ..30

3 FILTERING ALGORITHMS..33

3.1 WHY CIRCULAR CONVOLUTION..33

3.2 CIRCULAR CONVOLUTION..34

3.3 MMX 2-D CONVOLUTION ROUTINE..37

3.3.1 MMX 1D convolution routine..37

3.3.2 Preparing the input...39

3.3.3 Rotating the input buffer.. 41

3.3.4 2D-convolution using 1D-convolution...42

3.3.5 Output processing...44

3.4 ALIGNMENT ISSUES..44

Page 3 of 61

Table of Contents

4 INTEGRATION OF MMX-CODE...45

5 CONCLUSIONS..46

6 APPENDICES...48

6.1 APPENDIX A: OPTIMUM COEFFICIENTS TESTS...48

6.1.1 Measuring Method...48

6.1.2 Function calculating MED...49

6.1.3 Function calls in main program...50

6.1.4 Output...52

6.2 APPENDIX B: DATA ALIGNMENT AND SPEED TESTS...54

6.2.1 Measuring techniques...54

6.2.2 Function calculating speed...55

6.2.3 Output...59

6.3 REFERENCES..61

Page 4 of 61

Acknowledgements

Acknowledgements

At this time, I would like to direct a word of thanks to some people who helped make this

publication possible.

Special thanks go to my supervisor Dr. Tassignon for his guidance and the opportunity to explore

this recent processor technology in relation to image processing.

I would also like to thank the KHBO, Leeds Metropolitan University and the professors

providing for the MSc. course which gave me the necessary knowledge to complete this work.

Also, a word of praise to the people that created the online manuals that can be found on the

web-sites of Intel, the Joint Photographic Experts, and the Joint Motion Pictures Experts. These

web-sites contain a lot of usable information.

Last but not least, I would like to thank those persons among my family and friends four their

encouragement and support which helped me realise this work.

Page 5 of 61

Introduction

1 Introduction

The objective of this work is to create a program that is useful to the image-processing course.

This course uses a mathematical approach to the subject, which is supported well by the

MATLAB mathematical software package. The problem with MATLAB is that it is an

interpreter and is therefore slow, especially for image processing. For instance, applying a

filter to a greyscale image of 320 by 200 pixels can take up to 5 minutes on a Pentium 133!

From an educational point of view, this is unacceptable. The newest version 5 of Matlab is

significantly faster than version 4, but this means upgrading all licenses in the university,

which is quite costly and still not fast enough (the filter still takes about 1 minute).

Eventually, the combination of newer and faster PC’s and the new version of Matlab will

solve the problem. In the mean time, another solution is necessary.

There are several solutions to the problem. The preferred solution was to create a stand-alone

application that can apply the filters computed by Matlab to any image.

The stand-alone application was written using Microsoft Visual C++. Its inline assembler was

used to insert MMX routines speeding up the filtering process. A shareware library taken

from [1] takes care of importing and exporting the images to different file formats.

Page 6 of 61

Chapter 1: Concept and techniques.

2 Concept and techniques.

The first solution explored was the Matlab to C compiler. This utility transforms the Matlab

function files, commonly known as “.m-files” to an ANSI-C file that can be compiled by

some compilers, among which Microsoft Visual C++, to produce a MEX-file. This MEX-

file is a slightly altered DLL-file in the Windows version of Matlab. Because the function is

now compiled and does not have to be interpreted, the function is executed much faster.

Tests with this system proved it inadequate: the tool does not always produce code that can

be compiled without alterations. The best way to make these MEX-files is to write the C-

code manually using the MATLAB C-library. This is unpractical for educational purpose,

because the student would be tangling with the complexity of a C language combined with

the Matlab library instead of the image-processing problem at hand.

Another disadvantage of the Matlab library is that it does not support MMX-technology, so a

stand-alone application would be much faster if it were to use this new technology.

MMX, short for MultiMedia eXtensions, is based on SIMD (Single Instruction Multiple Data)

instructions. The floating-point registers on board a Pentium are used to store one 64-bit,

two 32-bit, four 16-bit or eight 8-bit integer values. The MMX-instructions added to the

Pentium MMX and Pentium II instruction set perform the same operation (the usual

accumulator and shift operations and some instructions specific to the data-formats) on the

multiple integers in one of the MMX-registers. This way, several integers are processed in

one instruction. For instance, if eight 8-bit integers have to be squared this can be done in

one instruction! This is extremely interesting for image processing, because a pixel is

usually represented by 3 bytes. Without MMX technology, each byte needs to be handled

separately; with MMX technology, one can process multiple pixels at once.

Page 7 of 61

Chapter 1: Concept and techniques.

Another advantage of the MMX instructions is that no wrap-around occurs. Suppose one tries to

multiply 200 by 200 (result = 40000) and write the result to a 16-bit-register that is supposed

to contain a signed word. The result of this operation would be that the overflow flag is set

and the register would contain –25536, a negative value. MMX instruction can saturate if

desired. This means the result of the above operation is the value closest to the theoretical

result that is still in range, in this case 32767. In image processing wrap-around is very

disturbing. That is why use of the saturation possibility in the MMX-instruction set

produces far better results than traditional integer instructions.

Because the MMX registers overlap with the floating-point registers, MMX instructions cannot

be mixed with floating-point instructions. That is why an MMX-processor must be locked

in an MMX-state when executing MMX instructions. This happens automatically when the

processor executes the first MMX-instruction. Until the processor encounters the EMMS

(Empty MultiMedia State) instruction, all floating-point registers are inaccessible and their

contents are lost when the first MMX-instruction is executed.

That is why, instead of multiplying an integer A with a floating-point number B and rounding the

result to an integer C = round(A*B), one should multiply the floating-point number B with

coefficient D and round to an integer E=round(B*D). Now, A can be multiplied by the

integer E and integer-divided by the coefficient D to yield the result C=(A*B)/D. The result

C is now calculated using integer operations only. If the coefficient D is a power of 2,

integer dividing is the same as shifting, which is a simple and very fast operation.

In this project, MMX-technology was used to create a stand-alone Windows 32-bit application

that is able to apply the filters computed with Matlab to an image. These images are read in

from the common file-types by a freeware-library for the Microsoft Visual C++

programming language. This library stores the image to memory in the Windows DIB-

format. This format can be displayed by a routine present in Visual C++. That is why this

format is used throughout the project.

Page 8 of 61

Chapter 1: Concept and techniques.

The image read in by the library is then converted to a 24-bit per pixel (24-bpp) image (the DIB-

format supports a variety of data formats). This image is split to 6 8-bpp images (R, G, B,

Y, U and V channels) to which the filters are applied using normal convolution. After

applying the filter to one or more of these channels, the new 24-bpp image is computed from

these altered channels and the other channels are updated if necessary. This approach has

the advantage that one can view any channel immediately, because the channels are kept in

memory from the first moment they are needed until the image is closed.

This approach makes it possible to apply any filter to the image that is done by multiplying in the

frequency domain (Fourier transform). Among those filters are the standard high-pass, low-

pass, band-pass and Wiener filters. The kernel generated with Matlab is written to a text

file, which is written to the plug-in directory of the application. The application reads in

those kernels and their names and puts them in a menu, enabling the student to apply those

kernels to the image. Of course, having to restart the application each time a new kernel is

computed would be impractical. That is why the application can update this menu at the

user’s request.

The shareware-library used to read in the images also includes filters that cannot be applied using

convolution, such as the median filter. These filters can also be applied to the image, but

they were not optimised for MMX-technology.

While this work was in progress, Intel launched their Intel Image Processing Library or IPL,

which is available on their web-site for free downloading. Integrating this library could add

functionality to the program, but not replace the work that was done here. First of all,

gathering information and expertise in the field of MMX-programming was also a goal in

this project. Since the IPL is compiled and the source code is unavailable, we would still not

know how to go about writing programs using MMX-instructions. Second, the IPL

transforms DIB-images to its own format, does the processing, and then converts back to

DIB-format. The instructions in this project work on the DIB-format itself, so no conversion

is necessary. This means the method presented here is more straightforward and shorter,

which means the code can be used as an example to teach students how to program using

MMX-technology. In other words, the IPL is a wonderful library if the goal is to create an

application, but is useless from an educational point of view.

Page 9 of 61

Chapter 2: Colorspace Conversion

3 Colorspace Conversion

3.1 What are colorspaces?

In computer technology, images are usually represented by an array of pixels. Each pixel is

defined by its red, green and blue component. This means that a pixel can be represented

as a vector in a 3-dimensional space with saturated red, saturated green and saturated blue

as multiples of unity vectors. These three unity vectors form a basis for this space. It is

now possible to define a new basis in this space by choosing any 3 linearly independent

unity vectors. Three new variables with a limited resolution and range can now be defined

as multipliers for the new unity vectors. These 3 new variables combined with the new

unity vectors define a finite volume in the space. It is this finite volume that is called a

colorspace in this work. In plain English, each set of 3 variables representing a pixel

generates a new colorspace. Here are the most common colorspaces:

 RGB: Red Green Blue

 YUV or YCBCR: luminance or brightness (Y) and two chrominance variables

(U and V or CB and CR).

 HSB: Hue Saturation Brightness

 L*a*b*: again luminance and two chrominance variables.

For printing purposes, 3 variables are not enough and 4 variables are used: CMYK (Cyan

Magenta Yellow and the black component K). CMYK is also considered to be a colorspace.

Page 10 of 61

Chapter 2: Colorspace Conversion

3.2 Why colorspace conversion?

The human eye is more sensitive (in terms of resolution) to luminance (intensity or brightness of

light) than it is to the chrominance (colour of light). That is one reason why it is most

interesting to filter images by filtering only the luminance component and leaving the

chrominance information unchanged. In addition, filtering chrominance is too abstract.

For instance, one could say that a filter removes high frequencies from the blue

chrominance. What this means and how one can ‘see’ the effect is not explicable in plain

English. Removing high frequencies from the luminance simply means that the image

becomes more fluent, meaning edges become less abrupt. If one were to filter one or some

of the variables in RGB colorspace, both luminance and chrominance would be affected at

the same time, making it almost impossible to predict the result.

If filtering chrominance in a comprehensible way is desired, the HSB (Hue Saturation

Brightness) colorspace is needed. The problem with HSB is that it takes floating point

arithmetic to compute and therefore cannot be optimised for MMX-technology:

YB

YR
H

YRYBS

arctan

)()(22

The square root and arctangent functions are quite slow no matter what equipment is used. That

is why HSB is not supported in this project.

Page 11 of 61

Chapter 2: Colorspace Conversion

3.3 Constants in colorspace conversion

Conversion between spaces with different bases is usually performed using conversion matrices.

In this case, since it is a three-dimensional space, it requires a 3 by 3 matrix. We will first

handle the calculation from RGB to YUV variable per variable and then combine these

equations into matrices in order to calculate the coefficients to transform back.

How the luminance (Y) value has to be computed from an RGB-triplet, is fully defined and

agreed upon. This is done using the following formula:

b.g.r.y 114058702990

In this text, the following identifiers will replace the above constants:

bcgcrcy bygyry

The coefficients come from measurements of the eye’s sensitivity to red, green and blue light

respectively.

Because red and blue are not dominantly present in the Y-signal, it is logical to let U and V be

mainly dependant of respectively blue and red, so that the conversion from YUV to RGB

increases the accuracy of the calculated R and B values. The calculated G value already has

a large accuracy, because Y consists mostly of G.

In contrast with the Y-component, U and V components are not always computed in exactly the

same way. For instance, calculation of U and V for television broadcast happens as

follows:

y)*(r.v

y)*(b.u

8770

4930

When performing JPEG image compression, the method of calculation is different:

b
cc

c
 .g-

cc

c
 . r . v c

 b . g
cc

c
. r -

cc

c
 . - u c

bygy

by

bygy

gy

r

gyry

gy

gyry

ry
b

505050

505050

Calculating these constants yields:

bgrvc

bgruc

r

b

0.08131-0.418690.5

0.50.33126--0.16874

Page 12 of 61

Chapter 2: Colorspace Conversion

Rearranging the above formula shows us that:

 yr.
c

.
 v c

y)(b.
c

.
u c

ry

r

by

b

713270
1

50

564330
1

50

An MMX-routine obtained from Intel uses constants that are rounded values from television

broadcast systems:

y)*(r.v

y)*(b.u

880

490

This demonstrates that U and V are all calculated in the same basic way, except for two constant

multiplication factors.

For our purpose, the CCIR 601-1 standard is used. This is the same standard as used in JPEG

image compression.

To sum things up, we present the floating-point equations we will start from in this work:

vc

uc

y

r

b

r

r

r.

0.5

0.16874-

2990

g.

g.

g.

418690

331260

5870

b

b

b.

0.08131

0.5

1140

 yr.

y)(b.

713270

564330

The constants above will also be represented by the following symbols:

bcgcrcv

bcgcrcu

bcgcrcy

bvgvrv

buguru

bygyry

Now we have to convert the above floating-point operations to integer operations, since MMX-

technology handles only integer operations. In computer vision, a pixel is usually

represented by 3 bytes, one byte per variable. Higher resolutions are used only in highly

professional systems (such as RGB 16-bit mode in PhotoShop) and cannot be displayed on

a standard VGA-monitor or low-end colour printers.

In the used standard, r, g, b and y are floating point numbers ranging from 0 to 1. Representing

these variables by an unsigned byte simply means multiplying all the equations by 255 and

rounding. This does not affect the conversion constants for Y:

BcGcRcY

bcgcrcy

bygygy

bygyry

 255255255255

Page 13 of 61

Chapter 2: Colorspace Conversion

Things are somewhat different for U and V. Since u and v range from –0.5 to 0.5, an offset has

to be added to make U and V positive at all times. There are two ways to do this. The first

is to add 0.5 to u and then truncate the result:

 5.127

5.0 255 5.0255

5.127

5.02555.0255

BcGcRctruncV

bcgcrcv

BcGcRctruncU

bcgcrcu

bvgvrv

bvgvrv

buguru

buguru

The reason why this approach shouldn’t be used here is that pure greyscale values are no longer

greyscales after conversion. If u and v are zero, U and V will be 127. When calculating

backward, u and v would no longer be zero and colour would be introduced into the image.

One could also argue that a new floating-point number is introduced into the equation and

this method is therefore not suited for MMX optimisation. This is not the case, since the

whole equation still has to be multiplied in order to eliminate the floating-point

coefficients. The advantage of this method is that the range of u and v is symmetrical.

The second approach is to add an integer offset to the truncated 255*u value:

offsetBcGcRcV

offsetbcgcrcoffsetv

offsetBcGcRcU

offsetbcgcrcoffsetu

bvgvrv

bvgvrv

buguru

buguru

255255255 255

255255255255

This method solves the problem of u and v being 0, but introduces another problem. In this

application, offset could be either 127 or 128. To be compatible with common JPEG

routines, the value 128 was chosen here. When calculating backwards, u and v now range

from –0.502 to 0.498.

This means sacrificing exact representation of maximum red and maximum blue in order to get

exact greyscales. This is no real problem, since saturated red and saturated blue hardly

ever occur in natural images. These colours only occur in artificially generated images that

usually do not require filtering.

Page 14 of 61

Chapter 2: Colorspace Conversion

We now still have floating-point coefficients. Before I can explain how to eliminate them, I have

to explain an MMX-instruction that is the heart of all the routines in this work, namely the

pmaddwd instruction. It is an acronym for packed multiply and add words. MMX

registers are 64-bit registers, but they can also contain two 32-bit, four 16-bit or eight 8-bit

integers. There are instructions for each data format. The pmaddwd instruction takes two

registers filled with signed words and produces a register with two signed 32-bit results:

A B C D
E F G H

A*B+E*F C*G+D*H

All words are supposed to be signed 16-bit integers ranging from –32768 to +32767. The input

variables range from 0 to 255 and can simply be transformed to words by left padding with zeros.

The floating-point coefficients can be multiplied with a constant factor CM. Dividing the result

by the same factor would give us the desired result:

offset
C

BcCGcCRcC
V

offset
C

BcCGcCRcC
U

C

BcCGcCRcC
Y

M

bvMgvMrvM

M

buMguMruM

M

byMgyMgyM

The division can be replaced by a shift operation if CM is a power of 2. CM also has to be as large

as possible: the larger it is, the more accurate the result is. Because the absolute values of the

floating-point conversion coefficients range from 0.114 to .587, the maximum possible value for

CM is:

55821
587.

32767max MC

The exponent of the largest power of 2 that is smaller than 55821 is:

15
)2log(

)55821log(

trunc

Page 15 of 61

Chapter 2: Colorspace Conversion

So CM must be 215 or 32768. Let’s calculate the new coefficients; we will not round at this time:

 offsetBGRV

offsetBGRU

BGRY

1545.266455.1371916384

151638490.1085414.5529

1555.373582.1923463.9797

Above constants will be replaced by the following identifiers:

 offsetBCBVGCGVRCRVV

offsetBCBUGCGURCRUU

BCBYGCGYRCRYY

15

15

15

There could be some discussion as to how CRY, CBY, CGV and CBV have to be rounded.

However, there are some rules to keep in mind when rounding the above values. If the pixel is a

pure greyscale value, then R=G=B=Y and U and V must be 0. This means:

 offsetYCBVYCGVYCRVoffset

offsetYCBUYCGUYCRUoffset

YCBYYCGYYCRYY

15

15

15

2/

2/

2/

0

0

32768215

CBVCGVCRV

CBUCGUCRU

CBYCGYCRY

This a good time to start using the matrix notation:

 VUY

CBVCBUCBY

CGVCGUCGY

CRVCRUCRY

BGR

152

1

Assuming CRY, CBY, CGV and CBV can be rounded both towards 0 and towards ±, only the

4 following combinations satisfy the above rules:

2664163843735

137201085519235

1638455299798

2665163843735

137191085519235

1638455299798

2664163843736

137201085519235

1638455299797

2665163843736

137191085519235

1638455299797

or

or

or

Page 16 of 61

Chapter 2: Colorspace Conversion

In order to make a choice we will need the coefficients for the reverse calculation:

1

152

1

CBVCBUCBY

CGVCGUCGY

CRVCRUCRY

VUYBGR

With the accuracy used below, the result of the inversion is the same for all 4 possible RGB-

YUV conversion matrices:

0.00003-0.71414-1.40197

1.772030.34408-0.00001-

111

ccc

ccc

ccc

vbvgvr

ubugur

ybygyr

Again, we need to multiply this matrix with the largest possible power of 2 smaller than

(215-1)/1.77203, being 214 or 16384. Multiplying by 214 again yields the same result for all 4

RGB-YUV matrices and the used accuracy. No rounding is performed at this time:

0.45-11700.44-22969.95

29032.935637.46-0.14-

163841638416384

CVBCVGCVR

CUBCUGCUR

CYBCYGCYR

Again, some variables are up for discussion: CUG and CVG. CVB should be 0 for two reasons:

 CVB should be 0 theoretically, the –0.45 value is due to rounding in the RGB-YUV

matrix.

 Introducing a one here would mean having to perform an extra multiply-add

instruction and that would decrease conversion speed significantly.

The pure greyscale case does not help us to decrease possibilities here: it only tells us that

CYR=CYG=CYB=16384, which is already the case. So we have the following four possible

YUV-RGB conversion matrices:

011701-22970

290335638-0

163841638416384

011701-22970

290335637-0

163841638416384

011700-22970

290335638-0

163841638416384

011700-22970

290335637-0

163841638416384

or

or

or

Page 17 of 61

Chapter 2: Colorspace Conversion

We now have 4 possible RGB-YUV conversion matrices and 4 possible YUV-RGB conversion

matrices. The question now is which one to choose. To make that decision, I wrote a program

that converts all possible RGB values (all 16.8 million of them!) to YUV and back to RGB again.

In the process, the mean Euclidean distance of the conversion is recorded. Executing this

program for all 16 combinations of possible conversion matrices yields the mean Euclidean

distance in function of the constants used. The mean Euclidean distance is computed as follows:

255

0

2'2'2'

3

'''
'

256

1

255...0;,,,,,,

n
nnnnnn

nnnnnnnnn

BBGGRRMED

nBGRVUYBGR

The formula is derived from the Euclidean distance between the two vectors (R, G, B) and

(R’, G’, B’). This distance was chosen, because the human eye will experience the difference

according to this distance. Taking the mean is done to make the numbers smaller and easier to

interpret. For further explanation of the program itself and its output, refer to appendix A. Using

this procedure, we found that the following combination yields a minimum MED of 2.870744:

2665163843735

137191085519235

1638455299798

YUVRGB

01170022970

2903356370

163841638416384

-

-

YUV-RGB

Page 18 of 61

Chapter 2: Colorspace Conversion

3.4 Properties of the conversion

The reader may have noticed that the mean Euclidean distance of the conversion is rather high.

Only 372 out of 16.8 million pixels are unaffected by the conversion to YUV and back. All 256

pure greyscale values are among those 372. It is therefore safe to say that, apart from some

exceptions, only greyscale pixels are unaffected by the conversion. Remember that this is mainly

because of decisions we made when calculating the constants: not affecting greyscale pixels has

always been our primary concern.

These choices, however, are not the ones to blame for this poor result. The main reason the

MED is that poor is simply because the RGB-colorspace is smaller than the YUV-colorspace. In

other words, all RGB pixels have a corresponding pixel in YUV space, but not all pixels in YUV

space have a corresponding pixel in RGB space. For instance, let Y=0; U and V must equal

offset. If they don’t, you end up with negative R, G, or B values which are rounded to zero by

the pack and saturate commands in the routine. This fact alone means that 65535 pixels in YUV-

space do not have a corresponding pixel in RGB space. This means that the pixels converted

from RGB-space have a smaller resolution in YUV space.

Measurements show that the 16.8 million pixels in RGB-space are projected to only 1.4 million

pixels in YUV-space. This means that, in average, 12 pixels in RGB-space are projected to the

same pixel in YUV space. It is this decrease in resolution that is responsible for the pour MED.

It is inherent to the colorspace conversion and cannot be helped, except by an increase of the

number of bits used in YUV space. This was not done here, because it is uncommon and

because it would double the size of an already large data structure!

All this might seem very alarming, but only true experts with perfect vision can distinguish

between a picture with 16 million possible colours and the same picture with only 65536 possible

colours! In our case, we still have over 1 million possible colours. So we can be sure the

average human eye will never know the difference!

One should also note that, assuming the RGB unity vectors are orthogonal, the YUV unity

vectors are not. That is part of the reason why the RGB-space is smaller.

Page 19 of 61

Chapter 2: Colorspace Conversion

3.5 MMX algorithm for conversion from RGB to YUV

3.5.1 Introduction

First, a word on how Windows stores DIB’s (Device Independent Bitmaps). This data format

starts with a header containing information on how the pixels are stored. Our algorithm works

with only one data format, namely 3 bytes per pixel. An array of pixels follows the header. In the

data format we support in our routines, pixels are stored as 3 consecutive bytes, with B on the

lowest address, followed by G and R.

The MMX instruction MOVQ puts the byte on the lowest address in the least significant byte

(LSB) in the MMX register. This means that a MOVQ instruction will fill the MMX register

with RGBRGB…RGB values when reading the MMX register from left to right.

More detailed explanations of MMX-instructions can be found in [3].

To make optimal use of memory transfer capabilities of MMX-technology, the data must be

transferred 8 bytes at a time. A pixel is 3 bytes wide. To avoid unnecessary loads, the data

should be processed by 8 pixels or 8*3=21 bytes.

3.5.2 Arithmetic with PMADDWD: the heart of the conversion

Here is how the 8 Y values can be computed from the input using PMADDWD and PADDD

instructions:

R3 G3 B3 R2 B3 R2 G2 B2 R1 G1 B1 R0 B1 R0 G0 B0
CBY CGY 0 CRY CBY 0 CGY CBY CRY CGY 0 CRY CBY 0 CGY CBY

PMADDWD: PMADDWD: PMADDWD: PMADDWD:
YRG3 YR2 YB3 YGB2 YRG1 YR0 YB1 YGB0

PADDD: PADDD:
Y3 Y2 Y1 Y0

R7 G7 B7 R6 B7 R6 G6 B6 R5 G5 B5 R4 B5 R4 G4 B4
CBY CGY 0 CRY CBY 0 CGY CBY CRY CGY 0 CRY CBY 0 CGY CBY

PMADDWD: PMADDWD: PMADDWD: PMADDWD:
YRG7 YR6 YB7 YGB6 YRG5 YR4 YB5 YGB4

PADDD: PADDD:
Y7 Y6 Y5 Y4

Table 2-3.1

As can be seen, two consecutive Y values are calculated by two PMADDWD instructions, each

calculating intermediate results. A PADDD (Packed ADD Doubleword) instruction adds up the

corresponding intermediate results, yielding two completely calculated Y values. Let’s take a

more detailed look at how Y1 and Y0 are calculated:

Page 20 of 61

Chapter 2: Colorspace Conversion

op source operand destination operand

before operation

destination operand

after operation
PMADDWD CBY|0|CGY|CBY B1|R0|G0|B0 YB1|YGB0
PMADDWD CRY|CGY|0|CRY R1|G1|B1|R0 YRG1|YR0
PADDD YB1|YGB0 YRG1|YR0 Y1|Y2

Where:

 YB1 = CBY*B1+ 0 *R0 = CBY*B1

 YGB0 = CGY*G0+CBY*B0

 YRG1 = CRY*R1+CGY*G1

 YR0 = 0 *B1+CRY*R0 = CRY*R0

 Y1 = YB1 + YRG1 = CRY*R1+CGY*G1+CBY*B1

 Y0 = YGB0 + YR0 = CRY*R0+CGY*G0+CBY*B0

In our routine, the source operands for the PMADDWD instructions above are not kept in

registers, because there are not enough registers to do so. The PMADDWD-instruction can also

read its source operand from memory, and this is the case here. This hardly slows things down,

because they are loaded only once from main memory and kept in the primary cache, which is

practically as fast as the internal registers.

The rest of the Y values are calculated in a similar way as shown in table 1-1 above.

Exactly the same procedure is followed to calculate U and V, only the constants differ.

Now that I have explained the heart of the algorithm, two things remain to be explained: how the

words in the source operands are generated from the byte input and how to convert eight 32-bit

words to eight bytes.

Page 21 of 61

Chapter 2: Colorspace Conversion

3.5.3 Transforming the input

Transforming the input is quite straightforward. The following tables present an overview:

B5 R4 G4 B4 R3 G3 B3 R2 G2 B2 R1 G1 B1 R0 G0 B0
PUNPCKLBW: MOVQ:
R3 G3 B3 R2 G2 B2 R1 G1 B1 R0 G0 B0 G2 B2 R1 G1 B1 R0 G0 B0

MOVQ: PSRLQ: PUNPCKLBW:

R3 G3 B3 R2

R3 G3 B3 R2 0 0 G2 B2 R1 G1 B1 R0
PSLLQ: MOVQ:

B3 R2 0 0

00G2B2R1G1B1R0 00G2B2R1G1B1R0

PUNPCKHBW: PUNPCKLBW:
0 0 G2 B2

PADDW:
B3 R2 G2 B2 B1 R0 G0 B0

R7 G7 B7 R6 G6 B6 R5 G5 B5 R4 G4 B4 R3 G3 B3 R2
MOVQ: PUNPCKHBW:

R7 G7 B7 R6 G6 B6 R5 G5 R7 G7 B7 R6 G6 B6 R5 G5 B5 R4 G4 B4
PUNPCKHBW: PSLLQ: MOVQ:

R7 G7 B7 R6

B7 R6 G6 B6 R5 G5 0 0 B5 R4 G4 B4
MOVQ: PSRLQ:

B7R6G6B6R5G500 B7R6G6B6R5G500

PUNPCKHBW: PUNPCKLBW:
R5 G5 0 0 0 0 B5 R4

PADDW:
R5G5B5R4 B5 R4 G4 B4

Table 2-3.2

The important instructions used here are the PUNPCKLBW (Packed UNPaCK Low Byte to

Word) and PUNPCKHBW (Packed UNPaCK High Byte to Word) instructions. These

instructions convert bytes to words by interleaving two quadwords byte-wise. Assuming the

destination operand is filled with the bytes A7 through A0 and the source operand with bytes B7

through B0, the result of the unpack-byte-to-word would be the words B7A7 through B0A0. The

PUNPCKLBW instruction returns the lower 4 words, namely B3A3 through B0A0, while the

PUNPCKHBW instruction returns the higher 4 words, namely B7A7 through B3A3. In our

application, the source operand is always 0. This means that the lower or higher 4 bytes in the

destination operand are transformed from bytes to words by putting the byte in the least

significant portion of the word. Note that putting the byte in the highest significant portion of the

word would also be possible, but since the words are supposed to be signed and the bytes aren’t,

this isn’t a good idea: bytes with a value greater than 127 would become negative words.

Page 22 of 61

Chapter 2: Colorspace Conversion

Now that we know how the PUNPCKXBW instructions work, we can look further into the

transformation process.

Here is the list of instructions processing the first loaded quadword; the other quadwords are

subjected to a similar process:

 MOVQ: load G2B2R1G1B1R0G0B0 into an MMX register

 MOVQ: copy G2B2R1G1B1R0G0B0 to another MMX register

 PSRLQ: shift G2B2R1G1B1R0G0B0 right by 2 bytes, shifting in zeros yielding

00G2B2R1G1B1R0

 MOVQ: copy 00G2B2R1G1B1R0 to another MMX register

 PUNPCKHBW: unpack 00G2B2R1G1B1R0 high, yielding 00G2B2

 PUNPCKLBW: unpack 00G2B2R1G1B1R0 low, yielding R1G1B1R0

 PUNPCKLBW: unpack G2B2R1G1B1R0G0B0 low, yielding B1R0G0B0

 PADDW: The 00G2B2 result will be added byte-per-byte to B3R200 resulting from the

transformation process of the second quadword.

MOVQ: MOVe Quadword.

PSRLQ: Packed Shift Right Logical Quadword.

PADDW: Packed Add Word.

The other two quadwords are processed using a similar process according to table 1-2.

3.5.4 Formatting the output: packing.

The results of the PMADDWD operations are multiplied by 215 and still need to be shifted right

by 15 bits. This can be done using the PSRAD (Packed Shift Right Arithmetic) instruction. An

arithmetic shift will retain the sign bit: if the value is negative, ones are shifted in, otherwise,

zeros are shifted in. Therefore, an arithmetic right shift is the same as dividing a 2’s complement

integer by a power of 2, which is exactly what we want.

After the shift, the results can be packed from signed doublewords to signed words using the

PACKSSDW (PACK and Saturate Signed Doublewords to Words) instruction and from signed

words to unsigned bytes by the PACKUSWB (PACK Unsigned and Saturate Words to Bytes)

instruction. Both instructions take two quadwords and reduce the size of the contained integers

by half and put them one after the other in one quadword. If the integer cannot fit in its new size,

the new integer gets the closest possible value to the old integer (this is called saturating). That

is why this instruction is so interesting: no wrap-around occurs.

Page 23 of 61

Chapter 2: Colorspace Conversion

Using traditional truncation, trying to fit 40000 in a signed word would result in –25536; using

PACKSSDW it results in 32767.

For U and V, an offset must be added before packing from words to bytes. This can be done in

two places: before or after the PACKSSDW instruction. Naturally, the constants that have to be

used for this differ depending on the place adding the offset occurs. Here, it will be done in

whatever place is most convenient for coding. The reasons for this will be explained later.

Here is an overview of the output processing:

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
PSRAD
:

Y7 Y6

PSRAD:
Y5 Y4

PSRAD:
Y3 Y2

PSRAD:
Y1 Y0

PACKSSDW:
Y7 Y6 Y5 Y4

PACKSSDW:
Y3 Y2 Y1 Y0

PACKUSWB:
Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

U7 U6 U5 U4 U3 U2 U1 U0 V7 V6 V5 V4 V3 V2 V1 V0
PSRAD
:

U7 U6

PSRAD:
U5 U4

PSRAD:
U3 U2

PSRAD:
U1 U0

PSRAD:
V7 V6

PSRAD:
V5 V4

PSRAD:
V3 V2

PSRAD:
V1 V0

PADDD
:

U7 U6

PADDD:
U5 U4

PACKSSDW:
U3 U2 U1 U0

PACKSSDW:
V7 V6 V5 V4

PACKSSDW:
V3 V2 V1 V0

PACKSSDW:
U7 U6 U5 U4

PADDWD:
U3 U2 U1 U0

PADDWD:
V7 V6 V5 V4

PADDWD:
V3 V2 V1 V0

PACKUSWB:
U7 U6 U5 U4 U3 U2 U1 U0

PACKUSWB:
V7 V6 V5 V4 V3 V2 V1 V0

3.5.5 Combining concurrent processes: pairing and register limitations

You will not find the above operations being executed one after the other in the MMX routines.

Instead, the operations for transforming the input, calculating the values and formatting the

output are intertwined. There are two reasons for this.

The first reason is that there are not enough MMX registers to store all intermediate results of all

processes. This means that the first quadword has to be loaded and fully processed before the

second quadword can be loaded. This alone means we have to intertwine the processes

calculating Y, U and V.

Page 24 of 61

Chapter 2: Colorspace Conversion

The second reason is pairing. A Pentium processor can execute two instructions in parallel, but

there are restrictions. An obvious restriction is dependence: if a second instruction uses the

result of the previous instruction, these two instructions cannot be processed at the same time

because the second instruction has to wait for the first one to complete. Because instructions in

the same process always depend on the result of previous instruction, two instructions from one

process can never be paired. That is why instructions from different processes have to follow

each other, so they can be paired. More detailed information on pairing can be found in [2].

Because of these two reasons, an instruction belonging to one process is followed by an

instruction belonging to another process in the final code. Because that can be quite confusing, it

was decided to explain the separate processes instead of explaining the instruction sequence.

Page 25 of 61

Chapter 2: Colorspace Conversion

3.6 MMX algorithm for conversion from YUV to RGB

3.6.1 Introduction

There are two zeroes in the conversion matrix. This means that converting YUV to RGB takes

two multiply-add operations less. This should result in a faster algorithm, but in this case, it does

not. The conversion from YUV to RGB is, on the contrary, slower! The reason for this is that

the time gained in the actual calculation of RGB is lost during transforming the input and output

of the conversion routine. As will become apparent, there are a lot of problems associated with

the fact that the Y, U, and V components come from different DIB’s. The conversion requires a

lot of shift-operations that cannot be paired.

3.6.2 Arithmetic with PMADDWD: the heart of the conversion

Ironically, the reason why the YUV to RGB routine is slower is the fact that it takes less

multiply-add operations to calculate the result. The problem is that because of this, results are in

the wrong position and shift operations are necessary to add intermediate results. The following

table demonstrates this:

Y1 V1 Y1 U1 Y1 V1 Y1 U1 Y0 V0 Y0 U0 Y0 V0 Y0 U0
CYR CVR 0 CUG CYG CVG CYB CUB CYR CVR 0 CUG CYG CVG CYB CUB

PMADDWD:

PMADDWD: PMADDWD:
IGV1 B1 R0 IGU0

MOVQ: MOVQ:
IGV1 B1 IGV1 B1 R0 IGU0 R0 IGU0
PSRLQ: PSLLQ: PSRLQ: PSLLQ:

PMADDWD:

R1 IGU1 0 IGV1 B1 0 0 R0 IGU0 0 IGV0 B0
PADDD: PADDD: PADDD:

R1 G1 B1 R0 G0 B0

The same thing happens for the other 6 pixels. One could of course argue that the shift

operations would not be necessary if intermediate results were calculated with an extra

PMADDWD-instruction. The following table shows this:

Page 26 of 61

Chapter 2: Colorspace Conversion

Y1 V1 Y1 U1 Y1 U1 Y1 V1 Y1 U1 Y0 V0 Y0 U0 Y0 V0 Y0 V0 Y0 U0
PMADDWD: PMADDWD:
R1 IGU1 0 IGV1

PADDD:
PMADDWD:

PMADDWD: PMADDWD:
IG0 0 IG0 B0

PADDD:
R1 G1 B1 R0 G0 B0

This shows that only 7 operations would replace the 13 operations, but it also shows that this

makes transforming the input more complex and longer, so the progress made here would be

totally lost when transforming the input. That is why the first algorithm is chosen.

3.6.3 Transforming the input

As mentioned before, transforming the input is not as straightforward as it was in the RGB to

YUV routine. This is mainly because the input is not organised by pixel, but by channel.

The following table demonstrates the preparation procedure:

Y7-0 Y7-0 Y7-0 Y7-0
V7-0 U7-0 V7-0 U7-0

PUNPCKHBW: PUNPCKHBW: PUNPCKLBW: PUNPCKLBW:
YV7-4 YU7-4 YV3-0 YU3-0

MOVQ: MOVQ:
YV7-4 YV7-4 YV3-0 YV3-0
YU7-4 YU7-4 YU3-0 YU3-0

PUNPCKHWD: PUNPCKLWD: PUNPCKHWD: PUNPCKLWD:
YVYU7&6 YVYU5&4 YVYU3&2 YVYU1&0
MOVQ: MOVQ: MOVQ: MOVQ:

YVYU7&6 YVYU7&6 YVYU5&4 YVYU5&4 YVYU3&2 YVYU3&2 YVYU1&0 YVYU1&0
0 0 0 0 0 0 0 0

PUNPCKHBW: PUNPCKLBW: PUNPCKHBW: PUNPCKLBW: PUNPCKHBW: PUNPCKLBW: PUNPCKHBW: PUNPCKLBW:
YVYU7 YVYU6 YVYU5 YVYU4 YVYU3 YVYU2 YVYU1 YVYU0

OFFSETWN OFFSETWN OFFSETWN OFFSETWN OFFSETWN OFFSETWN OFFSETWN OFFSETWN
PADDW: PADDW: PADDW: PADDW: PADDW: PADDW: PADDW: PADDW:
YVYU7 YVYU6 YVYU5 YVYU4 YVYU3 YVYU2 YVYU1 YVYU0

The last operation subtracts the offset from U and V by adding 0;-128;0;-128 (=OFFSETWN)

word-by-word (PADDW instruction) to the YVYU-variables.

The values printed in italic show the last stage of conversion where there are only 4 registers to

store. That is why the preparation stage stops there in the code. Further unpacking is done as the

conversion progresses. For instance, YVYU1 and YVYU0 are calculated and converted to RGB

while YVYU7&6, YVYU5&4 and YVYU3&2 have not been processed yet. This way, all

variables can be kept in registers and no memory access is necessary.

Page 27 of 61

Chapter 2: Colorspace Conversion

The PUNPCKXWD instructions are similar to the PUNPCKXBW instructions, except that they

form doublewords from words instead of words from bytes. Suppose the destination operand of

the instruction is filled with four words A3 through A0 and the source operands filled with the

four words B3 through B0, the result of the PUNPCKLWD instruction would be B1A1B0A0.

PUNPCKHWD would result in B3A3B2A2. In this case the words are composed by two bytes,

for instance Y7U7.

3.6.4 Formatting the output: packing.

Packing in this routine is quite simple: all data is in the right sequence and no offsets need to be

added. All that has to be done is dividing by 214 by shifting right 14 bits:

R7 G7 B7 R6 G6 B6 R5 G5 B5 R4 G4 B4 R3 G3 B3 R2 G2 B2 R1 G1 B1 R0 G0 B0
PSRAD: PSRAD: PSRAD: PSRAD: PSRAD: PSRAD: PSRAD: PSRAD: PSRAD: PSRAD: PSRAD: PSRAD:
R7 G7 B7 R6 G6 B6 R5 G5 B5 R4 G4 B4 R3 G3 B3 R2 G2 B2 R1 G1 B1 R0 G0 B0
PACKSSDW: PACKSSDW: PACKSSDW: PACKSSDW: PACKSSDW: PACKSSDW:

R7 G7 B7 R6 G6 B6 R5 G5 B5 R4 G4 B4 R3 G3 B3 R2 G2 B2 R1 G1 B1 R0 G0 B0
PACKUSWB: PACKUSWB: PACKUSWB:

R7 G7 B7 R6 G6 B6 R5 G5 B5 R4 G4 B4 R3 G3 B3 R2 G2 B2 R1 G1 B1 R0 G0 B0

The instructions used here are the same as in 2.5.4

Page 28 of 61

Chapter 2: Colorspace Conversion

3.7 MMX algorithms and data alignment

3.7.1 Avoiding invalid memory accesses

The routines represented above process 8 pixels in one run. A problem arises when processing

the last pixels of the last line in the image buffer. If there are less than 8 pixels left, these

routines try to read in pixels that do not exist and read memory beyond the memory reserved by

Windows for that image and generate a protection fault. To avoid this, simplified version of the

above routines were created processing 4, 2, or 1 pixel. These routines take into account that

each line of a Windows DIB is doubleword (32-bit) aligned. This means that for a line

consisting of 9 pixels and therefore requiring 27 bytes, 28 bytes will be reserved and 1 byte extra

can be read, even though it does not contain anything useful. This might be useful, because

being able to read in 4 bytes in stead of 3 bytes means being able to use the MMX MOVD

instruction moving a doubleword from or to memory to or from the lower doubleword of an

MMX register. This saves the move operation from normal integer registers to MMX registers

and is therefore faster.

The C-routines containing these routines use the 8-pixel routine as many times as possible, then,

if there are 4 or more pixels to process, process the next 4 pixels with the 4-pixel routine, the rest

with the 2-pixel and 1-pixel routines if necessary. This way, unauthorised memory accesses are

avoided. Note that Windows 95/98 would never complain about memory transgressions but

Windows NT does. The strategy used here guarantees correct functioning under both operating

systems.

Page 29 of 61

Chapter 2: Colorspace Conversion

3.7.2 Optimising alignment for speed

There is another aspect of MMX memory transfer instructions that needs to be taken into

account. The memory transfers perform poorly when the data is not correctly aligned. The

MOVQ instruction performs adequately only when the pointer to memory is a multiple of 8

(quadword-aligned); the MOVD operation performs best when the pointer is a multiple of 4

(doubleword aligned). The difference cannot be ignored: the RGB to YUV routine is 24%

slower when the data is not properly aligned, while the YUV to RGB routine 12% slower. How

the effect of data alignment was tested and the results of the tests can be found in appendix B.

This shows the importance of starting the conversion with the right pixel. When processing

selected areas instead of the entire image, the 8-bit routine should start with a pixel that has a

pointer to its B-byte that is a multiple of 8. The 8-byte routine could start with the first pixel in

the line that is within the selection area and satisfies the alignment condition. The pixels before

that pixel can be processed with the 4, 2 and 1-pixel routines. Another solution would be to

convert more pixels than necessary. One could start with the first pixel outside the selection area

that satisfies the alignment condition. This is faster in some cases, because the 8-pixel routine is

much faster than the 4, 2, and 1-pixel routines. The problem is that it is not always applicable,

because these pixels might not exist.

Mapping all possible alignment conditions for the first pixel to be processed and calculating the

time required for getting to the first pixel inside the selection area satisfying alignment

requirements show which method is faster. The following tables do this:

Page 30 of 61

Chapter 2: Colorspace Conversion

RGB- YUV

p%8 p’-p
(bytes)

p’-p
(pels)

time
1-pel
(ns)

time
2-pel
(ns)

time
4-pel
(ns)

total
time
(µs)

p”-p
(bytes)

p’-p”
(bytes)

time
(µs)

0 0 0 0 0 0 0 0 0 0
1 15 5 491 0 535 1.026 -9 24 0.650
2 6 2 0 490 0 0.490 -18 24 0.650
3 21 7 490 490 535 1.515 -27 48 1.300
4 12 4 0 0 535 0.535 -12 24 0.650
5 3 1 491 0 0 0.491 -21 24 0.650
6 18 6 0 490 535 1.025 -30 48 1.300
7 9 3 492 490 0 0.982 -15 24 0.650

YUV-RGB

p%8 p’-p
(bytes)

p’-p
(pels)

time
1-pel
(ns)

time
2-pel
(ns)

time
4-pel
(ns)

total
time
(µs)

p”-p
(bytes)

p’-p”
(bytes)

time
(µs)

0 0 0 0 0 0 0 0 0 0
1 15 5 491 0 597 1.088 -9 24 0.803
2 6 2 0 583 0 0.583 -18 24 0.803
3 21 7 430 583 597 1.610 -27 48 1.606
4 12 4 0 0 597 0.597 -12 24 0.803
5 3 1 490 0 0 0.490 -21 24 0.803
6 18 6 0 583 597 1.180 -30 48 1.606
7 9 3 430 583 0 1.013 -15 24 0.803

When enlarging the selection area is faster, does not depend on the routine used. It is faster to

increase the selection area if possible in three cases, namely if the rest of division of the pointer

by 8 is 1, 3 or 7. Note that they are all cases where the 1-pixel routine was used. This routine is

very slow compared to the other routines. This is because this routine loads its variables from

memory to integer registers and copies them from integer register to MMX registers, an

operation that takes a lot of time.

The routine calling the MMX-routines checks alignment first and then uses the fastest way to

start the conversion, followed by several executions of the 8-pixel routine.

Page 31 of 61

Chapter 2: Colorspace Conversion

The same problem occurs at the end of the line being processed. Also here, enlarging the area

can mean faster processing. The following tables calculate the optimum solutions:

RGB- YUV

number of
pixels
left

time
4-pel
(ns)

time
2-pel
(ns)

time
1-pel
(ns)

total
time
(µs)

time
8-pel
(µs)

0 0 0 0 0 0
1 0 0 476 0.476 0.650
2 0 475 0 0.475 0.650
3 0 475 491 0.966 0.650
4 520 0 0 0.520 0.650
5 520 0 474 0.994 0.650
6 520 490 0 1.010 0.650
7 520 490 490 1.500 0.650

YUV-RGB

number of
pixels
left

time
4-pel
(ns)

time
2-pel
(ns)

time
1-pel
(ns)

total
time
(µs)

time
8-pel
(µs)

0 0 0 0 0 0
1 0 0 430 0.430 0.803
2 0 468 0 0.468 0.803
3 0 468 429 0.896 0.803
4 545 0 0 0.545 0.803
5 545 0 429 0.974 0.803
6 545 468 0 1.013 0.803
7 545 468 430 1.443 0.803

The execution times used here take into account alignment. Here the selection area is increased

if there are 3, 5, 6 or 7 pixels are left and if enlarging the area is possible.

More detailed information on alignment can be found in [2].

Page 32 of 61

Chapter 3: Filtering algorithms

4 Filtering algorithms

4.1 Why circular convolution

Most filters applied to images are based on point-by-point multiplication in the frequency-

domain. Normally, this requires applying the Fourier transform to the image, multiplying the

Fourier transform point-by-point with a filtering matrix, often referred to as a kernel, and

applying the inverse Fourier transform to the result. The problem with this approach is that the

Fourier transform is a calculation-intensive operation with complex values as a result. The result

is a process that is slow and requires a lot of memory. However, there is a way around the

Fourier transform, namely circular convolution. In this approach, the inverse Fourier transform

is applied to the kernel designed for use in the Fourier space. Once this kernel is available in the

space-domain, it can be applied to the image using circular convolution as many times as

necessary without having to calculate the Fourier-transform of the image or using complex

values.

The only instructions used in circular convolution are multiplication and addition. In fact, the

circular convolution can be calculated entirely using multiply-add instructions only. This makes

circular convolution ideal for MMX-optimisation. The only problem is again that the space

kernel usually contains floating-point numbers smaller than one. This problem will be dealt with

in exactly the same way as was done in the colorspace conversion, except that here, the

multiplication factor will be variable.

Page 33 of 61

Chapter 3: Filtering algorithms

4.2 Circular convolution

The strict mathematical definition of the 2-dimensional convolution is:

),(),(),(

),(),(),(

nmhnmxnmy

dndmnnmmhnmxnmy

There are many ways to implement the convolution with digital systems, but they always have

the following general form:

m n

nnmmhnmxnmy),(),(),(

The difference in digital convolution algorithms is the way in which the negative indices in this

summation are dealt with. The most common linear convolution method folds and shifts the h-

sequence to generate the h(m’-m, n’-n) sequence. This method yields a result with a larger

dimension than the input sequence.

Circular convolution assumes the kernel h and input signal x is periodic and the incoming sample

is exactly one period long. This means that if the signal contains M by N samples,

Zvu

nmhNvnMumh

,

,,

If an index is negative, we can simply add M or N to the index making the index positive. The

result is a matrix with exactly the same dimension as the input sequence. The input sequence

and kernel are the same dimension in this work. This brings us to the final equation of the

circular 2-dimensional convolution that will be used in this work:

1

0

1

0

),(),(),(
M

m

N

n

nnmmhnmxnmy

),(),(nmxnmy),(nmh

The circular convolution has the following property:

 (h(m,n)))(x(m,n))(nmh - FFF 1),(),(nmx

This means the Fourier transform can be avoided by using circular convolution, as mentioned

before.

Page 34 of 61

Chapter 3: Filtering algorithms

The problem now is how to calculate this double sum. In this work, the 2-dimensional

convolution is done by summing the results of a set of 1-dimensional convolutions. This is done

by looking upon a matrix as a collection of vectors. Each row in the matrix is a vector: if x(m,n)

is a matrix, than xm(n) is the m-th row in the matrix x. Now we can rewrite the above equation:

1

0

1

0

)()()(
M

m

N

n
mmmm nnhnxny

)(nh mm

1

0

)()(
M

m
mm nxny

1

0

M

m

m
mm yy

This shows one row of the 2-dimensional circular convolution can be calculated by summing the

results of a series of 1-dimensional circular convolutions. The 1D circular convolution routine

will calculate an entire row at once (all values of n) using one row from the input and one row

from the kernel. The corresponding elements in all resulting rows will be added to form an entire

row of the result.

Usually, during calculation the h-sequence is rotated to compute the result for consecutive values

of N:

)0()1()2()1()1()0()1(

)2()1()0()1()1()0()1(

)1()1()1()1()0()0()0(

)()()(
1

0

mmmmmmmmm
m
m

mmmmmmmmm
m
m

mmmmmmmmm
m
m

N

n
mmm

m
m

hNxNhxNhxNy

hNxhxhxy

hNxNhxhxy

nnhnxny

In this case, because the input has to be converted from byte to words and therefore requires

processing anyway, the input is rotated. This is possible if the terms in the equation above are

sorted differently:

Page 35 of 61

Chapter 3: Filtering algorithms

)1()0()1()2()0()1()1(

)1()2()1()0()0()1()1(

)1()1()1()1()0()0()0(

NhxhNxhNxNy

Nhxhxhxy

NhxhNxhxy

mmmmmmmmm
m
m

mmmmmmmmm
m
m

mmmmmmmmm
m
m

This shows the input is needed in reverse order. This will be taken care of as the input bytes are

converted to words. Note that it saves one rotation if ym’
m(N-1) is calculated first, followed by

ym’
m(N-2), and so on. This means that the input sequence will need to be rotated from right to left

instead of from left to right.

Page 36 of 61

Chapter 3: Filtering algorithms

4.3 MMX 2-D convolution routine

4.3.1 MMX 1D convolution routine

All the convolution routine needs to do is read a quadword from the rotating x-row and a

quadword from the h-row and perform the multiply-add (PMADDWD) instruction. The result of

this operation is added to an intermediate result, which is set to 0 at the beginning of the routine.

Because one PMADDWD-instruction actually does two multiply-add instruction and yields two

packed 32-bit results, a copy and shift operation would be necessary after each PMADDWD-

instruction to add both results to the intermediate result. This is why instead of one intermediate

result, two intermediate results in the form of one quadword are used. The two final intermediate

results are added by a shift and copy operation. The following might make this more clear:

xm(n’-(n+3)) xm(n’-(n+2)) xm(n’-(n+1)) xm(n’-n)
hm’-m(n+3) hm’-m(n+2) hm’-m(n+1) hm’-m(n)

PMADDWD:
p(n+2)+p(n+3) p(n)+p(n+1)

p(2)+p(3)+p(6)+p(7)+…+p(n-2)+p(n-1) p(0)+p(1)+p(4)+p(5)+…+p(n-4)+p(n-3)
PADDD

p(2)+p(3)+p(6)+p(7)+…+ p(n+2)+p(n+3) p(0)+p(1)+p(4)+p(5)+…+p(n)+p(n+1)

where p(n) = xm(n’-n)*hm’-m(n)

Note that if hm’-m and xm are padded with zeros, the result is unaffected. This is done here, so

there are always a multiple of 4 elements in hm’-m and xm. The routine rotating xm, however, must

take this into account.

After the above procedure is repeated enough times, the two intermediate results need to be

added as follows:

p(2)+p(3)+p(6)+p(7)+…+ p(N-2)+p(N-1) p(0)+p(1)+p(4)+p(5)+…+p(N-4)+p(N-3)
MOVQ:

p(2)+…+p(N-1) p(0)+…+p(N-3)
PSRLQ:

0 p(2)+…+p(N-1) p(2)+…+p(N-1) p(0)+…+p(N-3)
PADDD:

p(2)+…+p(N-1) p(0)+…+p(N-1)
PSRAD:

ym’
m(n’)

Page 37 of 61

Chapter 3: Filtering algorithms

The PSRAD instruction is there to perform a division. Remember that the values in the h matrix

are multiplied by a power of 2 which depends on the range of the floating-point h values.

Because the above process is not register-intensive and because it is easier to pair instructions

from two different processes, the instructions above are intertwined with instructions calculating

ym’
m(n’-1). The two results are combined in one quadword and can then be written to a buffer

using only one MOVQ-instruction. Another advantage of this pairing is that memory access to

the h-matrix is cut in half! The only price to pay for this is that there need to be two x input

vectors, one rotated one word in respect to the other. The number of rotations remains the same,

but an extra buffer is needed. This is usually not a problem, because kernel and hence input

matrices must be rather small to avoid saturation of the result.

The result is a routine calculating ym’
m(n’-1) and ym’

m(n’), requiring two x vector inputs, one h

vector input, the number of iterations (which is N/4 if N is a multiple of 4, N/4+1 otherwise), and

a location to store the quadword result.

There is of course a problem in the process encapsulating this routine if N is odd. Although it

does not pose a problem to calculate any ym’
m(n’) results, the last time the routine is called, there

is no ym’
m(n’-1) to calculate. The next vector to be calculated does not only need a new x-vector

(which would pose no problem) but also needs a new h-vector. Because of this, the 2-result

routine cannot be used to calculate a result of the next row. That is why a routine is created

calculating only one ym’
m result. This routine takes less time to complete than the routine

calculating two results, but takes more than half the time it takes the 2-result routine to calculate

two results. The 2-result routine is called as many times as possible, followed by the 1-result

routine if necessary. The reason why an extra routine is written for the case N is odd, is that

kernel sizes are often odd. The most common kernel sizes are 3x3, 6x6 and 9x9. Two out of

three kernel sizes are odd, which justifies the extra routine.

Because of the way the PMADDWD-instruction operates, this routine will perform optimally

with kernel sizes which are a multiples of 4 like 4x4, 8x8 and 12x12. This should be made clear

to people generating kernels for this programs.

Page 38 of 61

Chapter 3: Filtering algorithms

4.3.2 Preparing the input

4.3.2.1 Inverting the sequence

Not only does the input need to be transformed from bytes to words, they also have to be stored

in reverse order. Reversing the sequence is not so difficult when the bytes are first converted to

words, then converted to doublewords, rotated as doublewords and finally packed back to words.

The following table presents an overview:

x7 x6 x5 x4 x3 x2 x1 x0
MOVQ

x7 x6 x5 x4 x3 x2 x1 x0 x7 x6 x5 x4 x3 x2 x1 x0
PUNPCKLBW: PUNPCKHBW:

x3 x2 x1 x0 x7 x6 x5 x4
MOVQ: MOVQ:

x3 x2 x1 x0 x3 x2 x1 x0 x7 x6 x5 x4 x7 x6 x5 x4
PUNPCKLWD: PUNPCKHWD: PUNPCKLWD: PUNPCKHWD:
x1 x0 x3 x2 x5 x4 x7 x6

MOVQ: MOVQ: MOVQ: MOVQ:
x1 x0 x1 x0 x3 x2 x3 x2 x5 x4 x5 x4 x7 x6 x7 x6
PSLLQ: PSRLQ: PSLLQ: PSRLQ: PSLLQ: PSRLQ: PSLLQ: PSRLQ:
x0 0 0 x1 x2 0 0 x3 x4 0 0 x5 x6 0 0 x7

PADDD: PADDD: PADDD: PADDD:
x0 x1 x2 x3 x4 x5 x6 x7

PACKSSDW: PACKSSDW:
x0 x1 x2 x3 x4 x5 x6 x7

Using this process as the input pointer increases and the output pointer decreases, solves the

problem. That is, of course, if the size of the input is a multiple of 8. If it is not, similar routines

were created to process a different number of values. These altered routines must be applied at

the beginning of the conversion, because the first values read in end up in the last quadword in

the result and this is where padding occurs. The following presentation of input and output might

make things more clear:

x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 0

x7 x8 x9 x10 x11 x12 x13 x14x3 x4 x5 x6x1 x2x0

Page 39 of 61

Chapter 3: Filtering algorithms

This shows the padding problem must be handled at the beginning of the preparation stage. As

necessary, a byte, word and doubleword are read, moved to an MMX register and shifted to the

proper position for input to the left half of the routine above (generating only one quadword

result instead of two).

Adding the now correctly positioned values in the MMX-registers provides a suitable

doubleword input for the conversion routine. The following example explains how the situation

presented above is handled:

 MOV al, [input] : move the byte x0 from input to al

 MOVD mm0, eax : move 0|0|0|0|0|0|0|x0 to mm0

 MOV ax,[input+1] : move x2|x1 to ax

 MOVD mm1,eax : move 0|0|0|0|0|0|x2|x1 to mm1

 PSRLQ mm0,8 : mm0 now contains 0|0|0|0|0|0|x0|0

 PSRLQ mm1,16 : mm1 now contains 0|0|0|0|x2|x1|0|0

 PADDB mm0,mm1 : mm0 now contains 0|0|0|0|x2|x1|x0|0

When handled by the conversion routine, the result will be 0|x0|x1|x2, which will result to x2|x1|

x0|0 when written to memory using the MOVQ-instruction.

Similar routines were created in case the last quadword contains 2 and 1 values. The routine

handling 4 input bytes does not need this shift-and-add operation, it simply reads in one

doubleword and writes out one quadword.

The combination of routines handling 1, 2, 3, 4 and 8 input bytes can handle all possible input

sizes.

4.3.2.2 Handling offsets

If the input is read from the U- or V-channel, there is an offset present in the values read from

memory. This problem can be easily solved by making slightly altered input handling routines so

that they subtract the offset right after unpacking the input. This is the easiest solution, because

there are different routines for different padding situation. Depending on the padding, other

constants must be used because no offset must be removed from the padding zeros.

The result is that there are in total 10 input routines: 5 routines not subtracting offset (1, 2, 3, 4

and 8 input bytes) and 5 routines subtracting offset.

Page 40 of 61

Chapter 3: Filtering algorithms

4.3.3 Rotating the input buffer

The rotation process is extremely simple if the padding problem is not taken into account.

Fortunately, padding only causes problems when handling the last quadword. There are 4

possibilities for the last quadword: it can contain 4, 3, 2 or 1 values. The routine processing all

quadwords except the last one works as follows:

x(n-3) x(n-2) x(n-1) x(n) x(n-7) x(n-6) x(n-5) x(n-4)
PSRLQ: PSLLQ:

0 x(n-3) x(n-2) x(n-1) x(n-4) 0 0 0
PADDW:

x(n-4) x(n-3) x(n-2) x(n-1)

In the loop, only the higher quadword is read from memory by the routine. The lower quadword

is kept in register the previous time the loop was executed. This means that to enter the loop, the

first quadword needs to be read from memory before entering the loop. At this stage, the first

quadword is copied and then shifted so the first word is stored in a separate register in the form x

(n’) 0 0 0. This word will be needed when processing the last quadword.

The case where the last quadword contains two values will now be explained. The other cases

are handled by a similar process.

x(n’) 0 0 0 0 0 x(n’+1) x(n’+2)
PSRLQ: PSRLQ:

0 0 x(n’) 0 0 0 0 x(n’+1)
PADDW:

0 0 x(n’) x(n’+1)

The only difference when the number of values is different is how much x(n’) is shifted. It is

obvious that this process is much faster than moving every word separately using the normal

integer registers.

Page 41 of 61

Chapter 3: Filtering algorithms

4.3.4 2D-convolution using 1D-convolution

Assuming the size of the kernel h is M rows by N columns, a buffer is reserved for the h-matrix

providing storage space for M lines containing the lowest multiple of 4 higher than N words.

This ensures the h-matrix is quad-aligned.

The input h-matrix consists of floating-point numbers, which have to be converted to signed

integer words for storage in the h-buffer. To do this, the floating-point numbers have to be

multiplied by a constant CM. This constant CM must be a power of 2 and must be as high as

possible for the purpose of accuracy, but should not be too high because the larger CM, the higher

the probability the convolution will saturate because a lot of large numbers are added together.

Saturation also occurs when the size of the kernel is too big. It can be said that if the size of the

kernel is large, CM should be decreased to avoid saturation, but this is at the cost of accuracy. In

order to be able to experiment with this trade-off, CM can be determined by the user of the

program.

After all values in h are multiplied by CM, truncated and stored in the h-buffer, the x-buffer is

created. The x-buffer is exactly the same size as the h-buffer and is filled from a greyscale DIB

in memory by the input preparation routine discussed in 3.3.2. This is done by letting the input

preparation routine handle a section of each line of the DIB and storing the result in consecutive

lines in the x-buffer. Now there are two matrices in memory containing input and kernel. The

rows of each buffer are quad-aligned and both buffers contain integer words.

There are still 4 buffers needed to store rotated input and intermediate results. They are the

following:

 x1-buffer: contains one row from the x-buffer. The rotation routine stores its results in

this buffer.

 x2-buffer: same as x1-buffer, except that x2 is rotated once more than x1.

 YM-buffer: stores M by N 32-bit results from the convolution routine.

 YR-buffer: contains N 32-bit values and is used to store one row of the result before

packing.

Page 42 of 61

Chapter 3: Filtering algorithms

The algorithm to convolute the h- and x-buffer is presented below as C-style pseudo-code:

for (m’ = 0; m’ < M; m’++){

 calculate ym’ and store result in YR-buffer:{

 for (m = 0; m < M; m++){

 calculate the convolution of the m-th row of the x-buffer

 with the (m’-m)-th row of the h-buffer;

 store result in the m-th row of the YM-buffer:{

 copy the m-th row of the x-buffer to the x1- and x2-buffer.

 rotate the x2-buffer.

 N2 = N-1.

 if (N is odd){

 convolute x1 with hm’-m; store in YM[m, N2].

 rotate x1.

 rotate x2.

 decrement N2.

 }

 for (n = N2; n >= 0; n -= 2){

 convolute x1 and x2 with hm’-m; store in YM[m, n and n-1].

 rotate x1.

 rotate x2.

 }

 }

 Make the sum of each column in the YM-buffer

 and store the N results in the YR-buffer.

 }

 }

 pack values in YR-buffer from doublewords to bytes

 and store in one line of target DIB.

}

Page 43 of 61

Chapter 3: Filtering algorithms

4.3.5 Output processing

As can be seen in the pseudo-code above, two steps have not been explained yet. The first is

summing the values in the YM-buffer. This is done by reading all the first quadwords of each

row, adding them doubleword-by-doubleword (PADDD) and then storing the result to the first

quadword in the YR-buffer. Then all the second quadwords are added, and so on. This routine

is nothing but a MOVE and PADDD instruction in a double loop.

The second routine is the packing and storing of the values in the YM-buffer. This routine is

very similar to the packing algorithms discussed in paragraphs 2.5.4 and 2.6.4. This will not be

discussed further at this point.

4.4 Alignment issues

Because all intermediate buffers are quadword-aligned, there are no problems with alignment

anywhere in the routine, except when reading the input from the Windows DIB and storing to the

target Windows DIB. Because the size of the kernel and hence the input is relatively small,

considering alignment is not worth the effort. Aligning pointers as was done with the YUV-

routines would not pay off here, because more time would be lost calculating the optimal reading

strategy than is gained by proper reading.

Page 44 of 61

Chapter 4: Integration of MMX-code

5 Integration of MMX-code

The routines discussed in chapter 2 and 3 are put in an object called MMX_2D_Proc as static

functions. Another object called 2D_Proc was created and contains the same static functions as

MMX_2D_Proc, except that all functions are implemented without using MMX-technology.

They behave in exactly the same way, but are much slower. Both objects are put in a Win32

static library. This library is then used to replace the image processing routines in the library

ImageObject available from [1]. After adding some extra functionality to the ImageObject-

library, this library is used inside the application framework generated by Visual C++.

Some extra code was created to read in and organise files generated by Matlab and present them

in a menu. This is standard C-code not worthy of our attention here.

Page 45 of 61

Chapter 5: Conclusions

6 Conclusions

MMX-technology can definitely speed up application speed. The gain is not just a matter of

percentages but factors: one can expect the MMX-routine to be about 10 to 20 times faster than

code using the traditional integer instruction.

A second advantage is the DSP-like features of MMX-technology. In particular, the saturation

feature is greatly appreciated in DSP-applications. Extra code could provide saturation using

traditional integer technology, but this takes extra time, while saturating does not require extra

time when using MMX-technology. Also, the packing and unpacking instructions solve a

problem that usually takes a lot of shifting and adding. A relatively complex process is handled

in one instruction. This entire work is based on use of the multiply-add instruction, which is of

course one of the main assets of MMX-technology.

The main problem with MMX-technology is that data alignment is very important. If the data

structures handled can be defined by the author of the code, this poses no problem. If the data

structures are already defined and are not quad-aligned, some of the performance gain is lost to

slower reading of the data-structure. If the size of the data-structure is large, some techniques

can be used to make sure most of the data read in is aligned. When the amount of data is small,

alignment mismatches are practically unavoidable. Although alignment is important, it does not

mean that improper alignment causes the MMX-technology to be slower than traditional integer

operations. It just means the code slows down about 20%, but it is still much faster than

traditional technology.

Another disadvantage of MMX-technology at the moment is that MMX-instructions are not used

by any compiler, which means that to use MMX-technology, one needs to program in assembler.

This is a labour-intensive way of programming. The simplest way to handle this problem is spot-

optimising. This means an interesting instruction is given a function equivalent and then used as

a function in the rest of the process. The result is that a lot of memory copying occurs each time

that the instruction is needed. To avoid this, one can of course write function that handle more

complex problems but that means more assembler code and more time.

This problem is partly being solved by free libraries released by Intel, but these libraries have

three disadvantages. The first disadvantage is that the source code is unavailable, so if one needs

a slightly altered version of a certain function, that function cannot be altered.

Page 46 of 61

Chapter 5: Conclusions

The second disadvantage is that there are libraries for the most common signal processing

techniques, but this does not help if the problem at hand needs a custom approach.

The last and third disadvantage is that these libraries waste a lot of memory. To avoid alignment

problems, new aligned data formats are created. Functions are provided to convert existing data

formats to the new ones. Processing is then done on the new format and the data converted back

to the old format. This approach guarantees small and fast code, but requires a lot of memory.

This might be a problem in some situations where little memory is available.

Until compilers are made that recognise code that can be optimised for MMX-technology, and

include code for both MMX- and non-MMX-processors, assembler routines must be written for

those custom problems. Such a compiler will undoubtedly produce code using a lot of memory

and will probably not find the best solution. Applications that are speed- and memory-critical

will always have to be constructed using assembler. This is not only true for MMX-technology,

but also for traditional programming. Therefore, it will be important to master assembly

programming for some time to come.

In conclusion, it can be said that using MMX-technology produces faster code and better results,

but that as more performance gain is wanted, more work is required.

Page 47 of 61

Chapter 6: Appendices

7 Appendices

7.1 Appendix A: Optimum coefficients tests

7.1.1 Measuring Method

To calculate the Mean Euclidean Distance or MED of the conversion from RGB to YUV and

back to RGB, buffers were created to contain 256*256 pixels for the input RGB, output Y, U, V

and RGB signals. There are in total 2563 pixel possibilities, but it would take to much memory

to create buffers to hold all these pixels three times. That is why a buffer of 2562 pixels is used.

This buffer is large enough to hold all possibilities for green and blue. The red component is the

same for all elements in the buffer. This buffer is converted to YUV using the MMX-routine and

converted from YUV back to the second RGB-buffer. The values in both buffers are compared.

If the original pixel was R=0, G=1 and B=0 and the result would be R’=0, G’=0 and B’=0, then

the distance would be 1''' 222 BBGGRR . The distance is divided into

categories according to the integer values under the square root (X’-X). Only certain values of

the distance are possible, depending on how much times a certain integer appears in the (X’-X)

values. The following table displays all possible cases and the resulting distance:

(X’-X) distance index
3 * 0 0.0 0
1 * 1 1.0 1
2 * 1 1.4 2
3 * 1 1.7 3
1 * 2 2.0 4
2 * 2 2.8 5
1 * 3 3.0 6
3 * 2 3.4 7
2 * 3 4.2 8
3 * 3 5.1 9

An array of integers is used to store how many times a certain case has occurred. If a certain case

is detected, the integer with the corresponding index is incremented.

This process is repeated for each pixel in the buffer.

The above is repeated for each R-value, after which all possible pixels have been tested. The

MED is then the sum of the integers in the array multiplied with their corresponding distance

value divided by the total number of values, which is 2563. The results are printed to a text-file.

Page 48 of 61

Chapter 6: Appendices

In the main testing programs, the constants are kept in arrays and pointers to them are given to

the conversion routines. Changing the values and calculating the MED with each set of constants

yields MED in function of constants.

7.1.2 Function calculating MED

double CalcDist(FILE *f){
 /*
 Making a buffer to hold 3 times 256*256 pixels, 3 bytes a pixel:
 RGB_in : 1*3*256*256
 Y,U,V : 3*1*256*256
 RGB_out: 1*3*256*256
 */
 const long NR_PIX = (1<<16);
 const long BUFSIZE = 3*(3*NR_PIX);
 unsigned char RGB_in[BUFSIZE];
 unsigned char *Y, *U, *V, *RGB_out;
 Y = &RGB_in[(3*BUFSIZE/9)-1];
 U = &RGB_in[(4*BUFSIZE/9)-1];
 V = &RGB_in[(5*BUFSIZE/9)-1];
 RGB_out = &RGB_in[(2*BUFSIZE/3)-1];

 double distance;
 int dist[10] = {0,0,0,0,0,0,0,0,0,0};
 double med;

 //fill G and B values of the input buffer:
 for(int g=0; g < 256; g++)
 for(int b=0; b < 256; b++){
 RGB_in[(256*g+b)*3+1] = g;
 RGB_in[(256*g+b)*3+2] = b;
 }

 for(int r = 0; r < 256; r++){
 for(int pix=0; pix < NR_PIX; pix++)
 RGB_in[3*pix] = r;
 rgb2yuv((void *)RGB_in, (void *)Y, (void *)U, (void *)V, NR_PIX);
 yuv2rgb((void *)Y, (void *)U, (void *)V, (void *)RGB_out, NR_PIX);

 for(int p=0; p < NR_PIX; p++){
 distance = abs(RGB_in[p*3] - RGB_out[p*3]) << 1;
 distance += abs(RGB_in[p*3+1] - RGB_out[p*3+1]) << 1;
 distance += abs(RGB_in[p*3+2] - RGB_out[p*3+2]) << 1;
 distance = sqrt(distance);
 /*
 distance possibilities:
 3 * 0 : 0
 1 * 1 : 1
 2 * 1 : 1.4
 3 * 1 : 1.7
 1 * 2 : 2

 2 * 2 : 2.8
 1 * 3 : 3.0
 3 * 2 : 3.4
 2 * 3 : 4.2
 3 * 3 : 5.1
 */
 if(distance < 2.4)
 if(distance < 1.5)
 if(distance < 1.2)
 if(distance < 0.5) dist[0]++;
 else dist[1]++;
 else dist[2]++;
 else
 if(distance <1.9) dist[3]++;
 else dist[4]++;
 else
 if(distance < 3.8)
 if(distance < 3.2)
 if(distance < 2.9) dist[5]++;
 else dist[6]++;
 else dist[7]++;
 else

Page 49 of 61

Chapter 6: Appendices

 if(distance <4.7) dist[8]++;
 else dist[9]++;
 }
 }
 const double N = 16777216;
 med = dist[1]/N + (dist[2]/N)*sqrt(2.0) + (dist[3]/N)*sqrt(3.0) + (dist[4]/N)*2.0;
 med += (dist[5]/N)*sqrt(8.0) + (dist[6]/N)*3.0 + (dist[7]/N)*sqrt(12.0);
 med += (dist[8]/N)*sqrt(18.0) + (dist[9]/N)*sqrt(27.0);
 fprintf(f,"\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d", CRY, CBY, CGV, CBV,
 CUG,CVG);
 fprintf(f,"\ndistance:\n");
 fprintf(f," 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1\n");
 fprintf(f," (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)\n"
);
 for(int d=0; d < 9; d++)
 fprintf(f,"%7d ",dist[d]);
 fprintf(f,"%7d\n",dist[9]);
 fprintf(f,"MED (Mean Euclidean Distance): %f\n",med);
 return(med);
}

7.1.3 Function calls in main program

__int16 CRY_f, CBY_f, CGV_f, CBV_f, CUG_f, CVG_f;
 double med_f, med_c;
 FILE *fCD;
 fCD = fopen("Distance.txt","w");
 CRY=9797; CBY=3736; CGV = -13719; CBV=-2665;
 CUG=-5637; CVG=-11700;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 med_f = CalcDist(fCD);
 CUG=-5638; CVG=-11700;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CUG=-5637; CVG=-11701;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CUG=-5638; CVG=-11701;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CRY=9797; CBY=3736; CGV = -13720; CBV=-2664;
 CUG=-5637; CVG=-11700;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CUG=-5638; CVG=-11700;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }

Page 50 of 61

Chapter 6: Appendices

 CUG=-5637; CVG=-11701;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CUG=-5638; CVG=-11701;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CRY=9798; CBY=3735; CGV = -13719; CBV=-2665;
 CUG=-5637; CVG=-11700;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CUG=-5638; CVG=-11700;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CUG=-5637; CVG=-11701;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CUG=-5638; CVG=-11701;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CRY=9798; CBY=3735; CGV = -13720; CBV=-2664;
 CUG=-5637; CVG=-11700;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CUG=-5638; CVG=-11700;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 CUG=-5637; CVG=-11701;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }

Page 51 of 61

Chapter 6: Appendices

 CUG=-5638; CVG=-11701;
 InitVars();
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 med_c = CalcDist(fCD);
 if(med_c < med_f){
 med_f = med_c;
 CRY_f = CRY; CBY_f = CBY; CGV_f = CGV; CBV_f = CBV; CUG_f = CUG; CVG_f = CVG;
 }
 fprintf(fCD,"\n\nminimum MED = %f for constants:",med_f);
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY,CBY,CGV,CBV,
 CUG,CVG);
 printf("\n\nminimum MED = %f for constants:",med_f);
 printf("\nCRY = %d; CBY = %d; CGV = %d; CBV = %d; CUG = %d; CVG = %d",CRY_f,CBY_f,CGV_f,
 CBV_f,CUG_f,CVG_f);

7.1.4 Output

CRY = 9797; CBY = 3736; CGV = -13719; CBV = -2665; CUG = -5637; CVG = -11700
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24692 0 1343138 9681974 3838244 1888796 0 0
MED (Mean Euclidean Distance): 2.870778

CRY = 9797; CBY = 3736; CGV = -13719; CBV = -2665; CUG = -5638; CVG = -11700
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24781 0 1344241 9680701 3835979 1891142 0 0
MED (Mean Euclidean Distance): 2.870782

CRY = 9797; CBY = 3736; CGV = -13719; CBV = -2665; CUG = -5637; CVG = -11701
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24775 0 1343549 9680953 3836148 1891419 0 0
MED (Mean Euclidean Distance): 2.870829

CRY = 9797; CBY = 3736; CGV = -13719; CBV = -2665; CUG = -5638; CVG = -11701
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24882 0 1345884 9676574 3835373 1894131 0 0
MED (Mean Euclidean Distance): 2.870799

CRY = 9797; CBY = 3736; CGV = -13720; CBV = -2664; CUG = -5637; CVG = -11700
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24689 0 1343465 9681623 3837513 1889554 0 0
MED (Mean Euclidean Distance): 2.870784

CRY = 9797; CBY = 3736; CGV = -13720; CBV = -2664; CUG = -5638; CVG = -11700
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24776 0 1344399 9680689 3835089 1891891 0 0
MED (Mean Euclidean Distance): 2.870794

CRY = 9797; CBY = 3736; CGV = -13720; CBV = -2664; CUG = -5637; CVG = -11701
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24772 0 1343795 9680683 3835417 1892177 0 0
MED (Mean Euclidean Distance): 2.870838

CRY = 9797; CBY = 3736; CGV = -13720; CBV = -2664; CUG = -5638; CVG = -11701
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24878 0 1346035 9676183 3834868 1894880 0 0
MED (Mean Euclidean Distance): 2.870816

CRY = 9798; CBY = 3735; CGV = -13719; CBV = -2665; CUG = -5637; CVG = -11700
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24744 0 1342708 9683407 3838651 1887334 0 0
MED (Mean Euclidean Distance): 2.870744

Page 52 of 61

Chapter 6: Appendices

CRY = 9798; CBY = 3735; CGV = -13719; CBV = -2665; CUG = -5638; CVG = -11700
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24833 0 1343811 9682134 3836386 1889680 0 0
MED (Mean Euclidean Distance): 2.870748

CRY = 9798; CBY = 3735; CGV = -13719; CBV = -2665; CUG = -5637; CVG = -11701
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24827 0 1343119 9682386 3836555 1889957 0 0
MED (Mean Euclidean Distance): 2.870795

CRY = 9798; CBY = 3735; CGV = -13719; CBV = -2665; CUG = -5638; CVG = -11701
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24934 0 1345454 9678007 3835780 1892669 0 0
MED (Mean Euclidean Distance): 2.870765

CRY = 9798; CBY = 3735; CGV = -13720; CBV = -2664; CUG = -5637; CVG = -11700
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24741 0 1343035 9683056 3837920 1888092 0 0
MED (Mean Euclidean Distance): 2.870749

CRY = 9798; CBY = 3735; CGV = -13720; CBV = -2664; CUG = -5638; CVG = -11700
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24828 0 1343969 9682122 3835496 1890429 0 0
MED (Mean Euclidean Distance): 2.870760

CRY = 9798; CBY = 3735; CGV = -13720; CBV = -2664; CUG = -5637; CVG = -11701
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24824 0 1343365 9682116 3835824 1890715 0 0
MED (Mean Euclidean Distance): 2.870804

CRY = 9798; CBY = 3735; CGV = -13720; CBV = -2664; CUG = -5638; CVG = -11701
distance:
 0.0 1.0 1.4 1.7 2.0 2.8 3.0 3.4 4.2 5.1
 (3*0) (1*1) (2*1) (3*1) (1*2) (2*2) (1*3) (3*2) (2*3) (3*3)
 372 0 24930 0 1345605 9677616 3835275 1893418 0 0
MED (Mean Euclidean Distance): 2.870781

minimum MED = 2.870744 for constants:
CRY = 9798; CBY = 3735; CGV = -13719; CBV = -2665; CUG = -5637; CVG = -11700

Page 53 of 61

Chapter 6: Appendices

7.2 Appendix B: Data alignment and speed tests

7.2.1 Measuring techniques

Windows has a timer for every process running in the Windows environment. This timer shows

how many milliseconds of processing time were allocated to the process since it started. It is

important to use this timer instead of the general timer, because Windows regularly interrupts the

processes to check if the start button was pressed, etc. This timer, however, does not function

adequately in Windows 95/98. Running a second process in the background yields lower speed

results for the tested routine, showing that the time indicated by the timer is not the time the

process has been running, but the time Windows has been running. The problem is obviously

known by Microsoft, because Visual C++ refuses to profile an application under Windows 95/98,

but profiles perfectly under Windows NT. The speed tests were also unaffected when running a

second process, meaning time is measured accurately only when running Windows NT. This is

very important and must be considered if one wishes to test the speed of these routines on other

machines.

Because it takes much less than a millisecond (under 1µs!) to execute any of the routines once,

the routines are executed a number of times and the measured time is then divided by the number

of times they were executed. To allow easy comparison of the execution time in milliseconds,

the number of times a routine is executed depends on how many pixels are processed in one run.

For instance, if the routine processing 8 pixels at once is executed N times, than the routine

processing 4 pixels at once is executed 2*N times. This way, the result is the number of

milliseconds needed to process a fixed number of pixels using a routine. The time needed to

sustain the loop (incrementing the counter and testing for end-of-loop) are subtracted from the

measured time, so the time measured is the time in the conversion routines only.

The input pointer is shifted one byte every time to test the effect of alignment on speed. There

are two possibilities to alter alignment. The first is to keep alignment fixed and test the speed of

the different routines, while the second is to change alignment while keeping the used routine

constant. Both approaches are explored here.

Page 54 of 61

Chapter 6: Appendices

The values obtained are transformed to million pixels per second and time for one execution in

nanoseconds for reading convenience. All results are written to a text-file. Only the case where

alignment changes in the inner loop is used to calculate the times for single execution, because it

best represents the situation of preparing for alignment, were these values are used to determine

optimal reading strategy.

The syuv2rgb and srgb2yuv routines mentioned are routines written in normal C-language, not

using MMX-technology.

The values displayed are those obtained on a Pentium MMX 166MHz computer with 64MB

RAM running Windows NT.

7.2.2 Function calculating speed

void TestSpeed(FILE *f){
 //variables to store number of processor ticks:
 clock_t start, finish, funcstart, funcend;
 funcstart = clock();
 long t_loop[9];
 long t1_rgb2yuv[8][6];
 long t1_yuv2rgb[8][6];
 long t2_rgb2yuv[8][6];
 long t2_yuv2rgb[8][6];

 //number of iterations:
 const long NR_IT = 1048576;

 //create Buffers
 unsigned char rgb_in[3*8+16];
 unsigned char y[8+16];
 unsigned char u[8+16];
 unsigned char v[8+16];
 unsigned char rgb_out[3*8+16];

 //create and align pointers to buffers
 unsigned char *RGB_in, *Y, *U, *V, *RGB_out;
 __int64 temp = (__int64) &rgb_in[0];
 temp /= 8;
 RGB_in = (unsigned char *) ((temp+1)*8);

 temp = (__int64) &y[0];
 temp /= 8;
 Y = (unsigned char *) ((temp+1)*8);

 temp = (__int64) &u[0];
 temp /= 8;
 U = (unsigned char *) ((temp+1)*8);

 temp = (__int64) &v[0];
 temp /= 8;
 V = (unsigned char *) ((temp+1)*8);

 temp = (__int64) &rgb_out[0];
 temp /= 8;
 RGB_out = (unsigned char *) ((temp+1)*8);

 //variables to be used in loops:
 long p;
 int i,j, nr_pix, mul;

 //determining time required by for-loop
 for(i=0;i<9;i++){
 start = clock();
 for(p=0; p < NR_IT*i;p++);
 finish = clock();
 t_loop[i] = (long)(finish - start);
 }

Page 55 of 61

Chapter 6: Appendices

 for(i = 0; i<8; i++){
 for(j = 0; j < 5; j++){
 nr_pix = j;
 if(j == 3) nr_pix = 4;
 if(j == 4) nr_pix = 8;

 if(nr_pix==0) mul=1;
 else mul = 8 / nr_pix;

 start = clock();
 for(p=0; p < (NR_IT*mul);p++)
 rgb2yuv((void *)RGB_in, (void *)Y, (void *)U, (void *)V, nr_pix);
 finish = clock();
 t1_rgb2yuv[i][j] = (long)(finish - start) - t_loop[mul];

 start = clock();
 for(p=0; p < (NR_IT*mul);p++)
 yuv2rgb((void *)Y, (void *)U, (void *)V, (void *)RGB_out, nr_pix);
 finish = clock();
 t1_yuv2rgb[i][j] = (long)(finish - start) - t_loop[mul];
 printf("²");
 }
 start = clock();
 for(p=0; p < NR_IT;p++)
 srgb2yuv((void *)RGB_in, (void *)Y, (void *)U, (void *)V, 8);
 finish = clock();
 t1_rgb2yuv[i][5] = (long)(finish - start) - t_loop[1];

 start = clock();
 for(p=0; p < NR_IT;p++)
 syuv2rgb((void *)Y, (void *)U, (void *)V, (void *)RGB_out, nr_pix);
 finish = clock();
 t1_yuv2rgb[i][5] = (long)(finish - start) - t_loop[1];

 RGB_in++;
 Y++;
 U++;
 V++;
 RGB_out++;
 printf("²");
 }
 printf("\n");
 fprintf(f,"\nmaximum number of clock ticks for loop : %d\n",t_loop[8]);
 fprintf(f,"number of clock ticks per second : %d\n",CLOCKS_PER_SEC);

 fprintf(f,"\nALTER ALIGNMENT IN OUTER LOOP, PIXEL COUNT IN INNER LOOP:\n");
 fprintf(f,"\nnumber of clock ticks to execute rgb2yuv enough times\n");
 fprintf(f,"to process %d pixels(w/o loop time):\n",NR_IT*8);
 fprintf(f," p %% 8 overhead 1 pixel 2 pixels 4 pixels 8 pixels srgb2yuv\n");
 for(i = 0; i <8; i++){
 fprintf(f,"%4d ",i);
 for(j = 0; j < 6; j++)
 fprintf(f," %8ld", t1_rgb2yuv[i][j]);
 fprintf(f,"\n");
 }
 fprintf(f,"\nnumber of clock ticks to execute yuv2rgb enough times\n");
 fprintf(f,"to process %d pixels(w/o loop time):\n",NR_IT*8);
 fprintf(f," p %% 8 overhead 1 pixel 2 pixels 4 pixels 8 pixels syuv2rgb\n");
 for(i = 0; i <8; i++){
 fprintf(f,"%4d ",i);
 for(j = 0; j < 6; j++)
 fprintf(f," %8ld", t1_yuv2rgb[i][j]);
 fprintf(f,"\n");
 }

 RGB_in -= 8;
 Y -= 8;
 U -= 8;
 V -= 8;
 RGB_out -= 8;

 for(j = 0; j < 5; j++){
 nr_pix = j;
 if(j == 3) nr_pix = 4;
 if(j == 4) nr_pix = 8;

 if(nr_pix==0) mul=1;
 else mul = 8 / nr_pix;

Page 56 of 61

Chapter 6: Appendices

 for(i = 0; i<8; i++){
 start = clock();
 for(p=0; p < (NR_IT*mul);p++)
 rgb2yuv((void *)RGB_in, (void *)Y, (void *)U, (void *)V, nr_pix);
 finish = clock();
 t2_rgb2yuv[i][j] = (long)(finish - start) - t_loop[mul];

 start = clock();
 for(p=0; p < (NR_IT*mul);p++)
 yuv2rgb((void *)Y, (void *)U, (void *)V, (void *)RGB_out, nr_pix);
 finish = clock();
 t2_yuv2rgb[i][j] = (long)(finish - start) - t_loop[mul];
 RGB_in++;
 Y++;
 U++;
 V++;
 RGB_out++;
 printf("²");
 }
 RGB_in -= 8;
 Y -= 8;
 U -= 8;
 V -= 8;
 RGB_out -= 8;
 }
 for(i = 0; i<8; i++){
 start = clock();
 for(p=0; p < NR_IT;p++)
 srgb2yuv((void *)RGB_in, (void *)Y, (void *)U, (void *)V, 8);
 finish = clock();
 t2_rgb2yuv[i][5] = (long)(finish - start) - t_loop[1];

 start = clock();
 for(p=0; p < NR_IT;p++)
 syuv2rgb((void *)Y, (void *)U, (void *)V, (void *)RGB_out, 8);
 finish = clock();
 t2_yuv2rgb[i][5] = (long)(finish - start) - t_loop[1];
 RGB_in++;
 Y++;
 U++;
 V++;
 RGB_out++;

 printf("²");
 }
 printf("\n");
 RGB_in -= 8;
 Y -= 8;
 U -= 8;
 V -= 8;
 RGB_out -= 8;

 fprintf(f,"\nALTER PIXEL COUNT IN OUTER LOOP, ALIGNMENT IN INNER LOOP:\n");
 fprintf(f,"\nnumber of clock ticks to execute rgb2yuv enough times\n");
 fprintf(f,"to process %d pixels(w/o loop time):\n",NR_IT*8);
 fprintf(f," p %% 8 overhead 1 pixel 2 pixels 4 pixels 8 pixels srgb2yuv\n");
 for(i = 0; i <8; i++){
 fprintf(f,"%4d ",i);
 for(j = 0; j < 6; j++)
 fprintf(f," %8ld", t2_rgb2yuv[i][j]);
 fprintf(f,"\n");
 }
 fprintf(f,"\nnumber of clock ticks to execute yuv2rgb enough times\n");
 fprintf(f,"to process %d pixels(w/o loop time):\n",NR_IT*8);
 fprintf(f," p %% 8 overhead 1 pixel 2 pixels 4 pixels 8 pixels syuv2rgb\n");
 for(i = 0; i <8; i++){
 fprintf(f,"%4d ",i);
 for(j = 0; j < 6; j++)
 fprintf(f," %8ld", t2_yuv2rgb[i][j]);
 fprintf(f,"\n");
 }

 //display test results in pixels/second

 const double factor_v = 8.0 * double(NR_IT) * (double(CLOCKS_PER_SEC) / 1.0E6);

 fprintf(f,"\nALTER ALIGNMENT IN OUTER LOOP, PIXEL COUNT IN INNER LOOP:\n");
 fprintf(f,"\nspeed of rgb2yuv in million pixels/second\n");
 fprintf(f," p %% 8 1 pixel 2 pixels 4 pixels 8 pixels srgb2yuv\n");
 for(i = 0; i <8; i++){
 fprintf(f,"%4d ",i);
 for(j = 1; j < 6; j++)
 fprintf(f," %8.4f", (factor_v / (double)t1_rgb2yuv[i][j]));
 fprintf(f,"\n");
 }

Page 57 of 61

Chapter 6: Appendices

 fprintf(f,"\nspeed of yuv2rgb in million pixels/second\n");
 fprintf(f," p %% 8 1 pixel 2 pixels 4 pixels 8 pixels syuv2rgb\n");
 for(i = 0; i <8; i++){
 fprintf(f,"%4d ",i);
 for(j = 1; j < 6; j++)
 fprintf(f," %8.4f", (factor_v / (double)t1_yuv2rgb[i][j]));
 fprintf(f,"\n");
 }
 fprintf(f,"\nALTER PIXEL COUNT IN OUTER LOOP, ALIGNMENT IN INNER LOOP:\n");
 fprintf(f,"\nspeed of rgb2yuv in million pixels/second\n");
 fprintf(f," p %% 8 1 pixel 2 pixels 4 pixels 8 pixels srgb2yuv\n");
 for(i = 0; i <8; i++){
 fprintf(f,"%4d ",i);
 for(j = 1; j < 6; j++)
 fprintf(f," %8.4f", (factor_v / (double)t2_rgb2yuv[i][j]));
 fprintf(f,"\n");
 }

 fprintf(f,"\nspeed of yuv2rgb in million pixels/second\n");
 fprintf(f," p %% 8 1 pixel 2 pixels 4 pixels 8 pixels syuv2rgb\n");
 for(i = 0; i <8; i++){
 fprintf(f,"%4d ",i);
 for(j = 1; j < 6; j++)
 fprintf(f," %8.4f", (factor_v / (double)t2_yuv2rgb[i][j]));
 fprintf(f,"\n");
 }

 //display time needed for 1 execution

 const double factor_t = ((1.0E9 / CLOCKS_PER_SEC) / NR_IT) / 8.0;

 fprintf(f,"\nALTER PIXEL COUNT IN OUTER LOOP, ALIGNMENT IN INNER LOOP:\n");
 fprintf(f,"\ntime needed to execute rgb2yuv once in nanoseconds\n");
 fprintf(f," p %% 8 1 pixel 2 pixels 4 pixels 8 pixels srgb2yuv\n");
 for(i = 0; i <8; i++){
 fprintf(f,"%4d ",i);
 for(j = 1; j < 6; j++){
 nr_pix = j;
 if(j == 3) nr_pix = 4;
 if(j == 4) nr_pix = 8;
 if(j == 5) nr_pix = 1;
 fprintf(f," %8.1f", t2_rgb2yuv[i][j] * nr_pix * factor_t);

 }
 fprintf(f,"\n");
 }

 fprintf(f,"\ntime needed to execute yuv2rgb once in nanoseconds\n");
 fprintf(f," p %% 8 1 pixel 2 pixels 4 pixels 8 pixels syuv2rgb\n");
 for(i = 0; i <8; i++){
 fprintf(f,"%4d ",i);
 for(j = 1; j < 6; j++){
 nr_pix = j;
 if(j == 3) nr_pix = 4;
 if(j == 4) nr_pix = 8;
 if(j == 5) nr_pix = 1;
 fprintf(f," %8.1f", (t2_yuv2rgb[i][j] * nr_pix * factor_t));

 }
 fprintf(f,"\n");
 }

 long lcctime = 0;
 for(i = 0; i <8; i++){
 for(j = 0; j < 6; j++){
 lcctime += t1_rgb2yuv[i][j];
 lcctime += t2_rgb2yuv[i][j];
 lcctime += t1_yuv2rgb[i][j];
 lcctime += t2_yuv2rgb[i][j];
 }
 }
 double cctime = (double)lcctime / (double)CLOCKS_PER_SEC;

 funcend = clock();
 double ftime = (double)(funcend - funcstart) / (double)CLOCKS_PER_SEC;
 double ccpct = cctime/ftime*100;
 fprintf(f,"%.3f seconds in TestSpeed,\n", ftime);
 fprintf(f,"of which %.3f seconds in color space conversion routines (%.2f%%)", cctime, ccpct);
}

Page 58 of 61

Chapter 6: Appendices

7.2.3 Output

maximum number of clock ticks for loop : 0
number of clock ticks per second : 1000

ALTER ALIGNMENT IN OUTER LOOP, PIXEL COUNT IN INNER LOOP:

number of clock ticks to execute rgb2yuv enough times
to process 8388608 pixels(w/o loop time):
 p % 8 overhead 1 pixel 2 pixels 4 pixels 8 pixels srgb2yuv
 0 260 3985 1992 1092 681 8562
 1 251 4116 2053 1442 891 8583
 2 250 4116 2063 1442 901 8613
 3 250 4116 2683 1442 902 8572
 4 250 3976 2053 1132 901 8573
 5 250 4116 2053 1432 892 8572
 6 240 4125 2053 1442 882 8602
 7 250 4116 2694 1432 891 8572

number of clock ticks to execute yuv2rgb enough times
to process 8388608 pixels(w/o loop time):
 p % 8 overhead 1 pixel 2 pixels 4 pixels 8 pixels syuv2rgb
 0 261 3616 1973 1141 842 7170
 1 260 3595 2444 1452 951 7250
 2 261 3595 2443 1443 951 7260
 3 251 4116 2634 1442 951 7171
 4 260 3605 1963 1252 951 7260
 5 261 3595 2443 1452 951 7251
 6 261 3606 2433 1442 951 7191
 7 260 4116 2634 1442 952 7210

ALTER PIXEL COUNT IN OUTER LOOP, ALIGNMENT IN INNER LOOP:

number of clock ticks to execute rgb2yuv enough times
to process 8388608 pixels(w/o loop time):
 p % 8 overhead 1 pixel 2 pixels 4 pixels 8 pixels srgb2yuv
 0 251 3996 1993 1091 681 8573
 1 260 4106 2063 1462 901 8562
 2 260 4116 2053 1472 892 8612
 3 260 4116 2684 1462 901 8573
 4 261 3976 2053 1121 891 8572
 5 260 4126 2063 1472 902 8582
 6 250 4106 2053 1452 891 8612
 7 261 4116 2694 1472 901 8583

number of clock ticks to execute yuv2rgb enough times
to process 8388608 pixels(w/o loop time):
 p % 8 overhead 1 pixel 2 pixels 4 pixels 8 pixels syuv2rgb
 0 260 3605 1963 1142 842 7170
 1 251 3605 2443 1452 951 7251
 2 261 3595 2444 1442 951 7260
 3 250 4116 2633 1453 952 7170
 4 250 3595 1963 1252 951 7251
 5 261 3605 2444 1442 951 7241
 6 260 3605 2443 1452 952 7180
 7 250 4106 2634 1452 941 7210

ALTER ALIGNMENT IN OUTER LOOP, PIXEL COUNT IN INNER LOOP:

speed of rgb2yuv in million pixels/second
 p % 8 1 pixel 2 pixels 4 pixels 8 pixels srgb2yuv
 0 2.1050 4.2111 7.6819 12.3181 0.9797
 1 2.0380 4.0860 5.8173 9.4148 0.9774
 2 2.0380 4.0662 5.8173 9.3103 0.9739
 3 2.0380 3.1266 5.8173 9.3000 0.9786
 4 2.1098 4.0860 7.4104 9.3103 0.9785
 5 2.0380 4.0860 5.8580 9.4043 0.9786
 6 2.0336 4.0860 5.8173 9.5109 0.9752
 7 2.0380 3.1138 5.8580 9.4148 0.9786

speed of yuv2rgb in million pixels/second
 p % 8 1 pixel 2 pixels 4 pixels 8 pixels syuv2rgb
 0 2.3199 4.2517 7.3520 9.9627 1.1700
 1 2.3334 3.4323 5.7773 8.8208 1.1570
 2 2.3334 3.4337 5.8133 8.8208 1.1555
 3 2.0380 3.1847 5.8173 8.8208 1.1698
 4 2.3269 4.2734 6.7002 8.8208 1.1555
 5 2.3334 3.4337 5.7773 8.8208 1.1569
 6 2.3263 3.4478 5.8173 8.8208 1.1665
 7 2.0380 3.1847 5.8173 8.8116 1.1635

Page 59 of 61

Chapter 6: Appendices

ALTER PIXEL COUNT IN OUTER LOOP, ALIGNMENT IN INNER LOOP:

speed of rgb2yuv in million pixels/second
 p % 8 1 pixel 2 pixels 4 pixels 8 pixels srgb2yuv
 0 2.0993 4.2090 7.6889 12.3181 0.9785
 1 2.0430 4.0662 5.7378 9.3103 0.9797
 2 2.0380 4.0860 5.6988 9.4043 0.9741
 3 2.0380 3.1254 5.7378 9.3103 0.9785
 4 2.1098 4.0860 7.4831 9.4148 0.9786
 5 2.0331 4.0662 5.6988 9.3000 0.9775
 6 2.0430 4.0860 5.7773 9.4148 0.9741
 7 2.0380 3.1138 5.6988 9.3103 0.9774

speed of yuv2rgb in million pixels/second
 p % 8 1 pixel 2 pixels 4 pixels 8 pixels syuv2rgb
 0 2.3269 4.2734 7.3455 9.9627 1.1700
 1 2.3269 3.4337 5.7773 8.8208 1.1569
 2 2.3334 3.4323 5.8173 8.8208 1.1555
 3 2.0380 3.1860 5.7733 8.8116 1.1700
 4 2.3334 4.2734 6.7002 8.8208 1.1569
 5 2.3269 3.4323 5.8173 8.8208 1.1585
 6 2.3269 3.4337 5.7773 8.8116 1.1683
 7 2.0430 3.1847 5.7773 8.9146 1.1635

ALTER PIXEL COUNT IN OUTER LOOP, ALIGNMENT IN INNER LOOP:

time needed to execute rgb2yuv once in nanoseconds
 p % 8 1 pixel 2 pixels 4 pixels 8 pixels srgb2yuv
 0 476.4 475.2 520.2 649.5 1022.0
 1 489.5 491.9 697.1 859.3 1020.7
 2 490.7 489.5 701.9 850.7 1026.6
 3 490.7 639.9 697.1 859.3 1022.0
 4 474.0 489.5 534.5 849.7 1021.9
 5 491.9 491.9 701.9 860.2 1023.1
 6 489.5 489.5 692.4 849.7 1026.6
 7 490.7 642.3 701.9 859.3 1023.2

time needed to execute yuv2rgb once in nanoseconds
 p % 8 1 pixel 2 pixels 4 pixels 8 pixels syuv2rgb
 0 429.7 468.0 544.5 803.0 854.7
 1 429.7 582.5 692.4 906.9 864.4
 2 428.6 582.7 687.6 906.9 865.5
 3 490.7 627.8 692.8 907.9 854.7
 4 428.6 468.0 597.0 906.9 864.4
 5 429.7 582.7 687.6 906.9 863.2
 6 429.7 582.5 692.4 907.9 855.9
 7 489.5 628.0 692.4 897.4 859.5
532.175 seconds in TestSpeed,
of which 532.135 seconds in color space conversion routines (99.99%)

Page 60 of 61

Chapter 6: Appendices

7.3 References

[1] Richard C. Leinecker, Visual C++ 5 Power Toolkit, Ventana Communications group,

ISBN 1-56604-528-2

[2] MMX technology developers guide, Intel,

http://developer.intel.com/drg/mmx/manuals/dg/devguide.htm

[3] Intel Architecture MMX™ Technology Programmer’s Reference manual, Intel,

http://developer.intel.com/drg/mmx/manuals/prm/prm.htm

Page 61 of 61

